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Abstract

Software has become pervasive in our lives. Most commonly-used software, in-
cluding web browsers, instant messaging applications, office suites as well as video-
conferencing tools, routinely handles memory to store various contents, such as
pictures, music, videos, PDF documents. The memory allocator is the software
component providing such user applications with memory. Unfortunately, user ap-
plications do not always handle provided memory correctly; in fact, commonly-used
software is plagued by a class of security issues closely related to memory manage-
ment: memory safety issues. To mitigate such issues, it is possible to use hardened
memory allocators, that provide memory to applications while mitigating memory
safety issues and thus must satisfy heterogeneous goals. In turn, ensuring that these
delicate software components are reliable and actually correct is desirable, prompt-
ing the use of formal methods, that can be leveraged to increase the trust one can
place into software.

In this thesis, we present a methodology to prove hardened memory allocators
functionally correct, that we used to develop StarMalloc, a verified, efficient, hard-
ened, and concurrent memory allocator. Using the Steel separation logic framework,
we show how to specify and verify a variety of low-level patterns and delicate security
mechanisms, by relying on a combination of dependent types, SMT, and modular
abstractions to enable efficient, iterative verification.

We produce a verified artifact, in C, that implements the entire API surface of
an allocator, and as such works as a drop-in replacement for real-world projects,
notably the Firefox browser. We then evaluate StarMalloc and show that it exhibits
competitive performance by evaluating it against state-of-the-art memory alloca-
tors, and against a variety of real-world projects. Finally, aiming at gaining more
understanding about memory allocators behaviors, we developed a hardware-based
heap tracing prototype.
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Résumé

Le logiciel est devenu omniprésent dans la vie quotidienne. La plupart des logi-
ciels couramment utilisés, tels que les navigateurs Web, les applications de mes-
sagerie instantanée, les suites bureautiques ainsi que les outils de visioconférence,
s’appuient sur la mémoire pour traiter des contenus variés, tels que des images, de la
musique, des vidéos ou encore des documents au format PDF. L’allocateur mémoire
est le composant logiciel qui est chargé de fournir a ces logiciels de la mémoire lors
de leur exécution. Malheureusement, les applications utilisateurs ne manipulent pas
toujours la mémoire correctement. Dans les faits, de tels logiciels communément util-
isés sont affectés par une classe de problémes de sécurité étroitement liés a la gestion
de la mémoire, appelés problemes de sireté mémoire. Pour limiter les impacts de ces
problémes, il est possible d’utiliser des allocateurs mémoire dits renforcés, chargés
a la fois de subvenir aux besoins en mémoire des applications utilisateurs ainsi que
de pallier les problémes de stireté mémoire de celles-ci. Compte tenu de leur réle
crucial, il est souhaitable de s’assurer que ces briques logicielles délicates sont fiables
et correctes, ce qui motive I’emploi de méthodes formelles qui permettent de placer
davantage de confiance dans les logiciels auxquels elles sont appliquées.

Dans le cadre de cette thése, nous présentons une méthodologie pour prouver
la correction fonctionnelle d’allocateurs mémoire renforcés, que nous utilisons pour
le développement de StarMalloc, un allocateur mémoire vérifié, efficace, renforcé et
concurrent. En utilisant le cadriciel de vérification Steel s’appuyant sur la logique
de séparation, nous montrons comment spécifier et vérifier un ensemble varié de
structures bas niveau et de mécanismes de sécurité complexes. Pour ce faire, nous
nous appuyons sur la combinaison de types dépendants, de 1'usage d'un solveur
SMT et d’abstractions modulaires, qui permet un processus de vérification efficace
et itératif.

Nous produisons un artefact vérifié, en C, qui implémente I'entiéreté de I'interface
de programmation d'un allocateur et peut ainsi étre utilisé comme tel pour des
projets réalistes tels que le navigateur Firefox. Ensuite, nous évaluons StarMalloc
et démontrons que ses performances sont compétitives en le comparant a d’autres
allocateurs sur un ensemble de tests de performance réalistes. Enfin, dans le but de
mieux comprendre le comportement des allocateurs mémoire, nous avons développé
un prototype permettant de tracer les opérations de gestion de la mémoire sur le
tas, I’ensemble s’appuyant sur des fonctions matérielles.
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Chapter 1

Introduction

By June 1949, people had begun to realize that it was not so easy to get a
program Tight as had at one time appeared. It was on one of my journeys
between the EDSAC room and the punching equipment that the realization came
over me with full force that a good part of the remainder of my life was going
to be spent in finding errors in my own programs.

Maurice Wilkesﬂ Memoirs of a computer pioneer, MIT Press, 1985, p. 145

Software has become pervasive in our lives. Whether it is for instantaneous
communication such as email, instant messaging or videoconference; online access
to various public services such as housing benefits or more generally interacting
with government entities such as when filing taxes; making health appointments,
medical imaging and the handling of corresponding health data; e-commerce and
online banking: the common backbone of it all is software. This is also the case for
various means of transportation: there exist automatically operated metro lines [4];
in aviation, autopilot can assist in guiding the underlying aircraft’s flight control
system and even perform automatic landing in poor weather conditions (runways
Cat. III) [5, 6]; even cars are nowadays standardly equipped with electronic stability
control (ESC) |7, improving vehicles’ stability.

While we pervasively rely on software, software is not always reliable: accidents
partly due to software-related issues have occurred. In their 1993 investigation of
Therac-25 software-induced radiotherapy accidents between 1985 and 1987 [8], some
of which were lethal, Leveson and Turner’s opening statement is the following:

“Computers are increasingly being introduced into safety-critical systems
and, as a consequence, have been involved in accidents.”

More recently, the UK Post Office has been involved in a scandal related to an ac-
counting software system developed by Fujitsu called Horizon. With local branches
of the Post Office moving from paper-based accounting, various software bugs led to
mishandling of transactions [9], resulting in hundreds of sub-postmasters (local post

!Creator of the first stored-program computer, the Electronic Delay Storage Automatic Calcu-
lator (EDSAC), and of the Modula-3 safe programming language at the end of 1980s.
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office managers, liable in case of shortfalls [10]) wrongly convicted of stealing money,
to which can be added at least a dozen of suicides [11]... Former UK prime minister
Rishi Sunak described it in March 2024 “one of the greatest miscarriages of justice in
|[UK]’s history”; this scandal is at the time of writing still unfolding. Other notewor-
thy failures that did not result in casualties include Ariane 5’s failed maiden flight,
due to erroneous code reuse |12]: this led to the loss of roughly €300 millions [13].

The aforementioned cases form a rather diverse set of examples that may seem
catastrophic — they are — but one may wonder: do issues occur with basic blocks
that most software is based on? To this end, let us introduce very briefly memory
management. Most software, including web browsers, office suites as well as video-
conferencing tools routinely handles content whose size cannot precisely be predicted
at the time it was developed. Such content include pictures, music, videos, PDF doc-
uments. As a consequence, user applications need to be equipped with a dedicated
mechanism, so that they can be provided while running with a variable amount of
memory to store such data, depending on user and environment inputs. Memory
management precisely is this much-needed feature, handled by a memory allocator.

Unfortunately, commonly-used software is plagued by a class of security issues
closely related to memory management: memory safety issues, also sometimes called
memory corruption issues. As a matter of fact, Microsoft reported in 2019 that 70%
of all security updates for Microsoft products addressed memory safety issues [14]. In
2020, Google reported that 70% of “serious security issues” in the Chromium-based
Chrome web browser also correspond to such issues [15]. In 2024, they estimated that
memory safety issues were used in 75% of zero-day vulnerabilities exploited in the
wild, a class of noteworthy vulnerabilities leveraged by attackers during the period of
time security practitioners are not aware of them and thus do not provide mitigations
against them [16]. To give concrete examples of high-profile memory safety issues, we
can name Heartbleed (2014) [17] and BadAlloc (2021) [18]. The former is an issue
that was part of OpenSSL’s implementation of the TLS protocol, used to secure
HTTPS: this bug led to the stealing of health data from US hospitals with millions
of patients concerned [19]. The latter corresponds to a serious defect in memory
allocation handling found in many different memory allocators implementations [20)].
In turn, many embedded devices used in a “wide range of domains, from consumer
and medical I0TP to Industrial IoT, Operational Technology (OT), and industrial
control systems” [21] were affected: exploitation of this vulnerability could have
resulted in the loss of lives and damages to critical infrastructure. To put even more
emphasis on such issues, one can compare the economic cost of the aforementioned
Ariane 5 failure with that of events from the past decade: WannaCry ransomware
attacks alone in 2017 are estimated to have cost billions US$ in terms of global
damages [22]; a month later, the NotPetya wiper cyberattack, initially targeting
Ukraine and then affecting various entities worldwide, is estimated to have caused
10 billions US$ of total damages [23]. These two malwares were using the same
exploit: EternalBlue [24], which relies on a memory safety issue affecting various
Windows versions [25].

?Internet of Things, referring to devices that can be connected to local networks or even the
Internet.



Memory safety bugs are nowadays well identified as a pervasive class of vulnera-
bilities requiring a response. Faced with those bugs affecting a very broad range of
entities, there have been numerous calls from governements [26] and national cyber-
security bodies |27} 28 29, 30|, industry [31] as well as academia [32] over the past
three years for a systemic shift with respect to memory safety issues. Recognizing
the breadth of memory safety issues, and “the untenable position of |...| [r|esponding
on a crisis-per-crisis basis” [26], most of these advocate for proactively eliminating
entire classes of vulnerabilities thanks to a collaboration between all sectors. In
this setting, “proactively” means “at the source” [33|. That is, software must be
improved with a “secure-by-design” approach [28]: only secure software should be
shipped as a product, thereby reducing the burden on cybersecurity practitioners
through preventive rather than reactive action. In turn, the definition of software
in the aforementioned wording “secure software” requires specific care: it is actually
precisely advocated for a precise definition through the standardization of mem-
ory safety [32]. There is a consensus that most actionable leverage on this matter
stems from using memory-safe languages whenever possible, as these enforce mem-
ory safety by default while programming. Among them, one can cite Rust through
its ownership model [34]; SPARK through static analysis, formal verification en-
forcement of contracts and the disabling of dynamic memory management [35]; lan-
guages where memory management is automatic through garbage collection, such as
Python, Go, C#, Java, OCaml; and through Automatic Reference Counting (ARC)
such as Swift |29, 32, 36].

However, describing such best practices or even setting them as a requirement
does not improve the huge amount of already existing, vulnerable software. Mem-
ory unsafe programming languages such as C and C++ remain among the most
commonly used programming languages [29]. As a matter of fact, there exist huge
codebases written in C and C++: Google alone recognizes having accumulated hun-
dreds of millions of C++ code “in active use and under active, ongoing development”
as of 2024 [31]; these two languages form a “multi-billion line-of-code |[...] corpus” |32,
37]. In fact, they even are the languages used to implement the runtimes of many
memory-safe languages, raising concerns about the actual freedom of codebases pro-
grammed using memory-safe languages from memory safety issues [32]. While there
already are many projects to transition such C and C++ codebases to memory-safe
languages [38, 139, 33|, removing memory safety issues altogether is considered as a
long-term end goal, with a long gradual transition and corresponding decades-long
strategies [32]. This is why other complementary approaches are deemed necessary:
the phasing-out of vulnerable codebases are part of “mitigations to reduce preva-
lence” of memory issues, while these will not disappear any time soon and thus call
for “mitigations to reduce impact” [29].

Back in 2012, Berger already identified that the transition to memory-safe lan-
guages would be a long journey and advocated for reducing the impact of bugs
deemed inevitable, arguing that “Software Needs Seatbelts and Airbags” [40|: among
such safety components, security-oriented memory allocators. Security-oriented al-
locators can be defined as memory allocators developed using additional design con-
straints and providing specific security features to mitigate common memory safety
issues. Berger’s metaphor compares software to cars and the at-the-time position of
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the software industry to that of the car industry in the 1950s, where “safety was an
afterthought at best”™ software had “lots of horsepower” but no suitable safety mea-
sure regarding memory corruption issues. In this setting, security-oriented memory
allocators can play the same role as seatbelts and airbags: that of a last line of
defense, as accidents, referring to memory corruption issues, are bound to happen.
In fact, in 2023, as part of the push for memory safety, US CISAP|also argued that
among impact-reducing mitigations, “hardening memory allocators” can reduce the
reliability of exploits [29], leveraging Apple’s experience with their own hardened al-
locator [41]. In addition to that, specific support of memory allocators is essential to
enable another set of impact-reducing mitigations, that of hardware memory protec-
tions. Such protections encompass memory tagging such as ARM Memory Tagging
Extension (MTE) [42] or capability architectures like CHERI [43|, that both require
specific support from memory allocators, thus further stressing the importance of
these software components.

Software can be identified as critical when its reliability is of utmost impor-
tance. Increasing the amount of trust one can place into such software can be
done by applying specific methods encompassing formal methods, that is, “mathe-
matically based languages, techniques, and tools for specifying and verifying such
systems” [44]. This field has been successfully applied to a variety of specialized
safety-critical software, subject to rigorous standardized evaluation and stringent
regulation. One example is avionics software: commercial aircraft in Europe and
in North America must respect the DO-178C certification, that is accompanied by
the DO-333 Formal Methods supplement, as the benefits of these techniques are
recognized by the aviation industry [45, |46].

Hardened memory allocators form one of the key ingredients down the road to
memory safety: as such, they can be considered as critical software components,
whose reliability must be guaranteed. This calls for the use of formal methods and
precise study of these software components that correspond to common building
blocks shared by commonly-used software, as we have seen.

1.1 Memory allocators: role and constraints

Memory management, also called dynamic memory management, is the essential
feature through which programs can dynamically request additional space in the
form of chunks of memory at execution time. As the size of objects handled by
programs often cannot be predicted statically, it is an important feature provided
by memory allocators that interact with such client programs.

As (Unix-like) operating systems already provide userspace programs with mech-
anisms to get memory, one may wonder: why do memory allocators actually exist
in modern settings, distinctly from the operating system? System calls form the
standard way for such programs to request something from the operating system
(O8S), such as memory resources. Unfortunately, system calls are expensive in terms
of execution time: using a system call each time more memory is necessary would

3US Cybersecurity & Infrastructure Security Agency.
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be too costly for user applications. This is incompatible with the need for such
applications in rather direct interaction with the end user to be fast and reactive.
Thus, let us precise a bit the role of a userspace memory allocator: it is to efficiently
provide user applications with chunks of memory, while using few time resources.

Memory allocators must serve as an efficient intermediate between user applica-
tions and the operating system; as part of this role, they must reconcile different
abstractions. On one hand, at the end of the day, it is the sole role of a (Unix-
like) operating system to manage the hardware memory: as part of this task, the
OS provides abstraction over physical memory through wvirtual memory. For the
sake of brevity, we restrict us to say that the OS is responsible for the translation
of virtual memory addresses into physical memory addresses. In addition to that,
the OS implements paging: memory is divided in fixed-length blocks called pages,
whose length typically is 4096 bytes, corresponding to the OS basic unit of memory
management. On the other hand, client programs can request chunks of memory of
arbitrary size, that is, of any number of bytes. As we will see, this discrepancy has
several consequences. In practice, the typical behavior of the memory allocator is
to initially request a large amount of memory from the operating system, that will
progressively be allocated to user applications. When facing additional or specific
requests from client programs, there can be additional requests from the memory
allocator to the operating system.

In addition to allocation requests, memory allocators must support deallocation
requests. Deallocation requests correspond to the need for client programs to indi-
cate that some previously-allocated memory is no longer needed, so that this memory
can possibly be reused. As a consequence of this, the memory allocator must store
information during the entire execution of the client program about memory’s cur-
rent state. On one hand, it must keep track of allocated chunks of memory currently
in use by the client program, that have not yet been deallocated; on the other hand,
it must also keep track of available memory that is not currently in use, but may
eventually end up being allocated to the client program. As we will see, while not
directly visible from the client program, this fine-grained bookkeeping is at the heart
of memory allocators implementations, both as a matter of correctness and of per-
formance. This information about memory’s current state is called metadata: the
allocator must maintain it consistent with the actual memory’s state.

As noted by Aho et al. [47, Chapter 7|, memory management is part of the run-
time environment provided by the source language used to write the source code of
the considered program. Memory management may thus vary considerably depend-
ing on the source language.

Crucially, the distinction between memory-safe languages and memory-unsafe
languages is closely related (albeit not equivalent) to the fact that “allocators come
in two basic styles” 48|, depending on whether deallocation is manual (that is,
explicit for the programmer) or automatic (that is, implicit for the programmer).

On one hand, as allocations always are manual, manual deallocation results in
fully manual memory management. The key issue with manual memory manage-
ment is that it is error prone when not safeguarded by the underlying language.
Such languages are considered memory unsafe, as their unrestricted use results in
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Figure 1.1: Memory management software stack sketch.
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system calls handling < operating system (OS)

widespread memory safety issues. Examples of safeguards equipping manually man-
aged languages that are considered safe include the use of formal verification tooling
around specialized languages, such as Low* for low-level verified programming; and
of static analysis such as region analysis to place limitations on deallocations such
as the Cyclone dialect of C.

On the other hand, automatic deallocation through garbage collection requires
the runtime environment to be able to determine whether a block of previously allo-
cated memory is actually still used. There exists a vast research area corresponding
to garbage collection, that has led to the development of many widely-used garbage
collected programming languages such as Python, Go, Java and OCaml. In some
cases where performance is paramount, the incurred additional computing costs and
unpredictability are deemed unacceptable, resulting in the use of other approaches:
unsafe languages like C and C+-+, and more recently modern memory-safe languages
like Rust and Swift.

In the rest of this document, we will focus on manual memory management,
more specifically on the C programming language memory management. C mem-
ory management is part of the C standard library, also called libc. Its two main
primitives are malloc for memory allocation and free for memory deallocation. We
present a sketch of the C memory management software stack in Figure [I.1}

In this setting, the subset of memory that memory allocators are responsible for
is called the heap: as part of this role, beyond time performance, memory allocators
face numerous constraints [48, 49, [50|, such as the required support for arbitrary
allocation and deallocation requests sequences. This means that deallocation of
previously allocated memory chunks may intervene at any moment, resulting in a
large set of possible allocation and deallocation requests sequences. An important
consequence of this is that reusing deallocated space for future allocations is not
always easy: this can lead to poor organization of the heap, that is, poor usage
of memory resources, also called fragmentation. We will restrict us to give here
one example of fragmentation where, given the current heap organization, currently
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Figure 1.2: Fragmentation example.

unused memory cannot be used to satisfy the next request. More precisely, given
one allocation request to be fulfilled, the current state of the heap is such that
if considering the total amount of unused memory, it should be possible: however,
there is not a single suitable contiguous block of unused memory. Figure[l.2] presents
such a case, where already allocated blocks are in light blue. There is no single free
block large enough to handle a request of 4 bytes in this case.

As noted by Wilson et al. [49] while examining the time and memory performance
of various algorithms, there exists a large design space for memory allocators, result-
ing in a diverse set of implementations. In particular, standardization of memory
management fosters diversity, as custom memory allocators can be used as drop-
in replacements of the one provided by the system C standard library, of which
there also are several implementations. This diversity of implementations is all the
more wide-ranging due to the fact that other performance constraints exist. As an
example, since client programs can be concurrent ones, memory allocators must sup-
port concurrency. Performance constraints corresponding to concurrency handling
include: scalability with respect to the number of threads [51|, and ensuring that
scalability that does incur penalty due to cache-related issues [52].

Outside of these performance considerations, the role of memory allocators in
maintaining the heap is crucial as memory safety issues, plaguing software, occur
when invariants related to allocation and deallocation are not respected. There are
various sorts of memory safety issues: a simple example is when a client program
has been allocated a n-bytes memory block and tries to access beyond the allocation
end, e.g., the (n + 1)-th byte; this is called a buffer overflow. The issue with this
is that access to one allocation can then result to the access of another allocation
or even to the allocator metadata, e.g., provided they are adjacent. Let us recall
that the operating system memory management unit is that of a page and thus
cannot distinguish between correct or incorrect sub-page memory accesses: only
the memory allocator has this more fine-grained information about the heap at its
disposal. We have seen that fragmentation can happen when small unusable free
blocks are intertwined with allocations currently in use and that is not a desirable
situation from a performance perspective. However, we also have just seen that,
from a security point of view, optimizing the heap layout so that allocations are
tightly packed can be undesirable. This results in yet another one possible tradeoff
for memory allocators.

Given all of the mentioned tradeoffs, security-oriented allocators, also called
hardening or even hardened memory allocators, follow design choices leaning more
towards security that pure performance, reducing the impact of memory safety is-
sues. As a matter of fact, security-oriented cannot change whether client programs
respect memory safety invariants, that is, they cannot enforce memory safety on
their own. Due to their possibly specific memory layout and with the help of addi-
tional security mechanisms, they nonetheless can mitigate memory safety issues and
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render their exploitation in adversarial contexts more difficult [42,|53]. Depending on
the execution environment, it can be more or less useful to favor security: this calls
for a diversity of allocators, suitable for each context; memory allocator implemen-
tations providing configurable security through configurable security mechanisms is
one way to provide this.

A memory allocator is a complex piece of software, with many performance
tradeoffs to be made in the form of design choices. On top of this overall delicate
system, a security-oriented allocator must be designed and equipped with mecha-
nisms in order to mitigate memory safety issues. This additional requirement comes
at the expense of additional complexity, resulting in turn in possible additional im-
plementation issues. As previously mentioned, functional correctness of the result-
ing allocator is critical to ensure memory safety of the underlying client programs:
additional security mechanisms aiming at mitigating memory safety issues should
not endanger this fundamental requirement. Finally, this calls for additional efforts
be put with the aim of guaranteeing the functional correctness of security-oriented
memory allocators implementations.

1.2 Formal verification and machine-checked pro-
grams

Studying the correctness of programs and proving them as actually correct cor-
responds to a field that has been pioneered by Alan Turing as early as in 1949 [54],
asking the following question in a 3-pages seminal paper.

“How can one check a routind’] in the sense of making sure that it is
right?”

In this paper, Turing considers the functional correctness of a function computing
factorial (n — n!), that is, whether the output of this function is correct given its
specification. In short, does it actually compute factorial? is the question he aims
to answers positively. Turing arguably uses invariants to prove this function correct,
and a variant to prove its termination. Among other pioneering papers, one could
also include works from Goldstein and von Neumann [55] as well as from Curry [56].
This early research and the idea of proving programs remained largely unknown
until much later, as Knuth recalled it in 2003 [57]:

“Bob showed me some work he had been doing about mathematical tech-
niques for verifying that a program is correct — a completely unheard-of
idea in those days as far as I knew. The accepted methodology for pro-
gram construction was quite the opposite: People would write code and
make test runs, then find bugs and make patches, |...|, and so on until
not being able to discover any further errors, yet always living in dread
for fear that a new case would turn up on the next day and lead to a
new type of failure.”

4A more modern wording could here be “function”.
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In this quote, “Bob” actually is Robert Floyd, that gave his name along with
Tony Hoare to the Floyd-Hoare logic (or Hoare logic) stemming from two seminal
papers in 1967 [58] and in 1969 [59]. Crucially, studying the correctness of programs
implies to define precise, unambiguous semantics of the considered programs, or, per
Floyd paper’s title [58], to manage “Assigning Meanings to Programs”; this amounts
to defining formal semantics of the underlying programming languages, such as the
ALGOL-60 semantics defined in 1965 by Landin [60]. Indeed, Hoare logic brings
Hoare triples, of the following syntax: {P} ¢{Q}. This triple specifies, as Hoare
puts it, that “[i|f the assertion P is true before initiation of a program ¢, then the
assertion () will be true on its completion” [59]: in this setting, semantics for the
language of ¢ are required. Hoare logic became part of the basis of formal methods
and was subsequently largely refined and complemented.

Separation Logic [61] is a refinement extension of Hoare logic that allows rea-
soning on low-level, imperative programs manipulating pointers. More precisely,
its main feature is the reasoning on memory resources with the help of additional,
dedicated logical connectives. In the setting of reasoning about memory allocators,
another interesting feature is that it can handle ownership transfers of memory [62].
Concurrent Separation Logic |63, 64] is a further refinement of Separation Logic that
allows reasoning on concurrent programs.

Formal methods study a diverse set of properties through a variety of techniques,
leading to numerous tools that are increasingly used across the industry. Reconsid-
ering Turing’s aforementioned research question, we note that in its setting, “right”
could have had multiple meanings beyond functional correctness and termination,
such as the following ones. 1. When given specific inputs, can considered function
crash? 2. Does it have a reasonable resource usage, e.g., execution time? We use
these examples to illustrate the diversity of properties that can be considered by
formal methods as well as the wide range of techniques developed to study these
properties.

Regarding , crashes correspond to what is called run-time errors (or RTE),
that can be caused by programming errors, e.g., accessing an array out of bounds.
Determining whether crashes can occur can be tackled in several ways, including
through the use of abstract interpretation 65|, a formal method that static analyzers
can be based on. The Astrée static analyzer [66] relies on this technique and has
been used to prove the absence of RTEs in Airbus avionics software.

Regarding [2], determining the execution time of a program is impractical in
the general setting, as determining whether a program will terminate or not cor-
responds to the halting problem. It thus is undecidable: no algorithm can provide
an answer for all possible programs and associated inputs. Worst Case Execution
Time (WCET) analysis can however be usefully applied to a subset of all programs
through overapproximation of the considered program in order to compute upper
bounds of its maximum execution time. WCET analysis can be implemented in
various ways and has also been used in industrial settings to provide upper bounds
on execution times of programs considering specific underlying hardware [67].

Overall, it is generally considered that more precise properties are more difficult
to check and thus less scalable, i.e. less applicable to large programs.
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Concerning memory allocators, their specific role calls not only for strong guar-
antees through the use of formal methods, but also for precise guarantees such as
functional correctness that we thus aim for. Indeed, the memory safety of client
programs directly depends on the functional correctness of the underlying memory
allocators. To tackle this research problem, suitable formal methods require suffi-
cient expressiveness to state functional correctness properties, both for allocation,
deallocation as well as security mechanisms in the case of security-oriented alloca-
tors. Let us give an example of one of the expected functional correctness properties
with respect to allocation. The memory allocator, when faced with an allocation
request from a client program of n bytes, must return a memory chunk that should
be of length [ > n if allocation worked as intended. This memory provided to the
client is not usable by the allocator until deallocated by the client: this transfer of
ownership must be accounted for. To this end, metadata must remain consistent
with allocation and deallocation requests.

Deductive verification is the process of using specialized software that enables one
to describe objects through specifications and to prove them correct; corresponding
proofs are checked as valid by the software.

On one hand, this can be done in an interactive manner by using proof assistants,
also called interactive theorem provers. One common class of proof assistants are
typed-theory based and rely on the Curry-Howard correspondence to encode logical
propositions as types. In this setting, the proof programmer programs in a richly-
typed functional programming languages and encode specifications in the form of
typed objects. This way, she can provide proofs that are interactively checked by
the proof assistant. Examples of type-theory based interactive theorem provers (also
called proof assistants) are Rocq (formerly Coq) [68] and Lean [69]. Considered
objects can be executable programs or even mathematical theorems. As proving
software correct is a very time-consuming task, one of the main challenges is to
reduce the burden on the proof programmer so that complex software can be tackled.
One way to do so is to rely on modular abstractions separating different parts of the
proof and code; in type-theory based proof assistants, this can leverage dependent
types and higher-order predicates. This way, some part of the proof and code can
be updated while keeping the rest of it untouched and still valid. Another way to do
so is to provide the proof programmer with some sort of automation to manipulate
proofs, which brings us to the second sort of deductive verification software.

On the other hand, automated theorem provers form a class of specialized soft-
ware that can check the satisfiability of logical formulas over various reasoning the-
ories. Among such provers, SMT solvers such as the Z3 theorem prover |70] can be
used in combination with standard proof assistants to enable automated reasoning
about program-related theories (e.g., arithmetic). To this end, the proof assistant
must send to the SMT solver a query synthesizing the targeted proof goal so that if
the query is satisfiable, targeted property holds: the query is said to be a verification
condition.

We just mentioned that program formal verification using proof assistants is a
complex task faced with significant challenges regarding scalability and iterative
development. Proof assistants have nonetheless been successfully used to prove the



1.3. THIS THESIS 11

functional correctness of complex software such as operating systems (seL4 [71],
CertikOS [72]); compilers (CompCert [73], CakeML [74]) or abstract interpretation
based static analyzers (Verasco [75]). Thus, deductive verification through the use
of a proof assistant seems like a reasonable choice to tackle the formal verification
of a memory allocator’s functional properties.

In order to verify a security-oriented memory allocator, it seems necessary to
overcome two high-level challenges. On one hand, low-level reasoning, e.g., on point-
ers, can be difficult. On the other hand, updating proofs as part of the development
can be time-consuming. As a matter of fact, a userspace memory allocator is a
rather low-level software component, that must interact with the operating system
and most of all correctly handle raw memory pointers. Furthermore, a security-
oriented memory allocator is equipped with security mechanisms: implementing
all of it at once may seem like a daunting task. Instead of that, implementing a
functional bare albeit already security-oriented allocator to then focus on adding
security mechanisms seems more amenable. However, this iterative development,
while leaving room for future security extensions, e.g., the support of hardware fea-
tures, entails that all of the proofs related to functional correctness should support
iterative development, that is, be preserved when adding or improving various parts
of the allocator.

Targeting the formal verification of a realistic hardened memory allocator with
the aim of proving functional correctness properties raises various challenges. While
deductive verification through the combined use of a proof assistant and Concurrent
Separation Logic seems like a reasonable choice to tackle this task, suitable proof
engineering providing iterative development is required.

1.3 This thesis

In this thesis, we argue that hardened memory allocators can be formally
verified and used as drop-in replacements of their unverified counterparts.
To tackle the verification of this complex software, we developed a verifi-
cation methodology extending previous work that relies on the combined
use of concurrent separation logic, dependent types, SMT-aided verifi-
cation and modular abstractions. This methodology provided us with
scalability and reduced the proof burden associated with maintaining
proofs in an iterative development context. Furthermore, the perfor-
mance of formally verified hardened memory allocators such as the one
we developed can be competitive.

To validate this thesis, we rely on one case study. We give further background in
Chapter 2, first on the design and verification challenges of memory allocators in Sec-
tion 2.1} as well as a brief overview of Separation Logic and the Steel verification
framework that we used as part of our work Section [2.2]

Then, we present our main contribution in Chapter 3} the process of formally
verifying StarMalloc, a verified, hardened memory allocator. To this end, we present
in this chapter the iterative verification methodology that we extended from previous
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work to make iterative development tractable in our setting, e.g., for the verification
of data structures that were required as part of StarMalloc’s implementation. This
verification effort results in a functional correctness theorem about StarMalloc and
its configurable security mechanisms, along with the axiomatization of necessary
systems calls.

Next, we describe in Chapter [d] the process of benchmarking and deploying mem-
ory allocators in real-world setting. As part of it, we demonstrate that StarMalloc
exhibits competitive performance with respect to the allocator that it is heavily
inspired from on a set of real-world benchmarks aimed at evaluating memory alloca-
tors. We also demonstrate that StarMalloc supports the entire set of APIs that can
be expected from a realistic memory allocator through the support of Firefox. Fi-
nally, we describe a prototype relying on hardware tracing features aimed at gaining
understanding related to memory allocators benchmarks and implementations.



Chapter 2

Background

Dynamic memory allocation has been a fundamental part of most computer
systems since rougly 1960, and memory allocation is widely considered to be
either a solved problem or an insoluble one.

Dynamic Storage Allocation: A Survey and Critical Review, 1995 [49]

In this chapter, we first present challenges related to memory allocators design
and implementation in Section 2.1l We then give background about Separation
Logic and the Steel verification framework in Section 2.2l As such, this chapter
does not contain scientific contributions, presented in following chapters (Chapter

and Chapter [4)).
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2.1 Memory allocators: design and implementation
challenges

Introduction

In this section, we will see what are the design and implementation challenges
of memory allocators. We have seen in Section the role of memory allocators as
well as some of their constraints in the setting of C manual memory management,
resulting in various possible tradeoffs between time performance, memory perfor-
mance and security to only name a few. Building upon this, we will present memory
allocators designs of increasing complexity and the corresponding implementation
challenges. First, in Section[2.1.1], we start from basic memory allocators implement-
ing malloc and free to show that metadata as part of the allocator bookkeeping is
required in simple settings so that memory may be reused. Then, in Section [2.1.2]
we present other required APIs as part of the C standard to show that implement-
ing them correctly also requires consistent metadata as well as handling alignment.
Next, in Section [2.1.3] we lay the emphasis on the need for modern memory al-
locators to support concurrent settings: this requires implementations to be both
thread-safe and thread-scalable. Finally, in Section we give examples of prac-
tical memory safety issues affecting common memory allocator architectures as well
as examples of various security mechanisms to mitigate such issues. Implementing
these mechanisms comes at the expense of additional software complexity.
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2.1.1 Basic memory allocation: malloc, free and K&R free
lists

Before considering more complex implementations, we believe it is useful first
to consider basic memory allocation, only equipped with malloc and free alloca-
tion and deallocation functions: this allows us to highlight minimal implementation
requirements in terms of metadata so that previously allocated memory may be
reused.

These two functions appeared since the early beginning of the C programming
language history, which is closely related to that of the Unix kernel, initially written
in assembly by Dennis Ritchie and Ken Thompson. As a matter of fact, similar
malloc and mfree functions were already part of the 4th edition of the Unix kernel
(1973) source code |76], the first Unix version to be written in C. They can also be
traced back to the alloc and free functions of the “K&R C” described by Brian
Kernighan and Dennis Ritchie in their book The C Programming Language 77| first
published in 1978, that initially served as an informal specification.

C has since been standardized and subsequently revised, as we will see in the
next section. In this section, we will present malloc and free using the first C
standard, C89, completed in 1989 and ratified as an ISOE]/IE(ﬂ standard in 1990,
also referred to as ANSIP|C or C90 [78].

2.1.1.1 C89 malloc and free

First, let us consider the malloc prototype, that is, its type signature: its param-
eters and their types as well as its return type. It has one parameter corresponding
to the number of requested bytes to be allocated in the form of a single memory
block, that we refer to as size; and its return value is a pointer, that is, the ad-
dress to the allocated memory block if allocation succeeds. In that case, the size (in
bytes) of the allocated memory block is greater or equal than size and its content is
uninitialized. In case of failure, a null pointer is returned: NULL is a special pointer
value that does not correspond to the address of any valid memory object.

void* malloc(size_t size);

size_t is an unsigned integer type that can store the maximum possible size of any
object and thus of any memory allocation on the underlying system. voidx* is the
type of pointers without associated data type. The returned pointer thus must be
(possibly implicitly) cast to the desired type in order to actually be used.

Then, let us have a look at the free prototype. It also has exactly one parameter,
a void* pointer that we refer to as ptr: it must correspond to a memory allocation
previously allocated by malloc. In this case, the space corresponding to ptr is
deallocated and can be reused for other allocations. Otherwise, this is specified to
be an undefined behavior (UB), a case falling outside of specifications, leaving the

nternational Organisation for Standardization.
?International Electrotechnical Commission.
3 American National Standards Institute.
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corresponding result up to the implementation (of the compiler, or in our case of the
memory allocator). In turn, this leads to some uncertainty as to the actual runtime
behaviour [79].

void free(void* ptr);

void is the return type of functions that do not return any value. A consequence of
this is that checking for possible failure is difficult [48, §9.9.1]. Detecting failures is
subject to specific tradeoffs, briefly presented in Section 2.1.4.4]

2.1.1.2 An extremely rudimentary allocator

With C89 standard specifications in mind, we aim to lay the emphasis on the
need for memory allocators to maintain metadata about previously allocated blocks
so that memory may be reused. To this end, we use the example of a very rudimen-
tary memory allocator. Let us now present it: we consider a basic “bump pointer”
allocator, only handling the “heap’ﬁ as one segment [buffer,buffer + HEAP_SIZE)
of valid memory, where buffer corresponds to the segment’s start address and
buffer + HEAP_SIZE to its end. A pointer next is maintained such that it partitions
this segment in two parts:

e [buffer,next) corresponds to the part of the heap that already has been
allocated (and that cannot be deallocated, as we will see);

e [next,buffer + HEAP_SIZE) corresponds to the part of the heap that has not
yet been allocated and thus is available for further allocations.

Implementing malloc can be done the following way. To fulfill an allocation of
request of size bytes, one can first check whether there is still is enough available
space to allocate size bytes; if so, store the current value of next as ptr, increase the
value of next by size (C supports pointer arithmetic) and return ptr; otherwise,
return NULL.

The resulting implementation is very short and simple.

#2nclude <stdlib.h>
#ainclude <stdint.h>

#define HEAP_SIZE (1UL << 20) /* 1 MiB */
static uint8_t buffer [HEAP_SIZE];
static void* free_space = buffer;

static size_t total_allocated = OUL;

void* malloc(size_t size) {

4In the code snippet below, the region of allocations is not strictly speaking part of the heap:
static uninitialized data (and thus implicitly zero-initialized data) is part of the uninitialized data
segment (.bss). One may use the sbrk system call to use the heap as a resizable memory region.
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// bump allocator

if ((total_allocated + size <= HEAP_SIZE) && (size > 0)) {
void* ptr = free_space;
free_space += size;
total_allocated += size;
return ptr;

} else {
return NULL;

}

}

void free(void* ptr) { return; }

However, simplicity and time performance of this approach comes at a large cost:
free does not actually perform deallocation, thus resulting in poor memory perfor-
mance. In fact, deallocation amounts to “marking” blocks of memory as reusable:
in this setting, as no metadata is kept about allocated blocks, such as their size,
no information is available either once they have been deallocated. In this context,
without information about the heap layout of free blocks (neither pointers nor asso-
ciated memory blocks sizes), it is not possible to reuse them. Overall, this example
underlines that in practice, an allocator must keep track in a fine-grained way of
free memory, so that it may be reused, as also noted by Bryant and O’Hallaron [48].

2.1.1.3 K&R allocator: freelists

The requirement to keep track of free memory so that it may be reused was
already noted by Kernighan and Ritchie [77], that proposed as a solution an allocator
using a free list, referred to as the KéR allocator. The main idea is that due to the
almost arbitrary sequences of malloc and free calls, free memory is unlikely to form
a contiguous part of memory: one way to keep track of it is by maintaining a linked
list of all free blocks. To implement it, each memory block contains a header at its
beginning, storing its size in all cases, and the pointer to the next block in the freelist
for free blocks. To allocate, one can either attempt finding a large enough block in
the freelist or request more memory from the operating system (e.g., through sbrk
or the mmap system call).

This design is not immune to fragmentation. Let us briefly present the two sorts
of fragmentation. On one hand, external fragmentation, as briefly covered in the
introduction, occurs when the total amount of free memory is enough to satisfy an
allocation request while there is no single large enough memory block to actually
fulfill it. On the other hand, internal fragmentation occurs when an allocated block
used to satisfy an allocation request is actually larger than the requested amount of
memory.

There are many different ways to search for suitable block in the freelist: one
can return the first block of suitable size from the beginning of the free list (first
fit); the best block regarding the allocation request among all blocks of the free list
to optimize for internal fragmentation, thus of minimal size (best fit); or the first
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block of suitable size from a position saved between allocations when the linked list
actually forms a ring (next fit, due to Knuth). Once a suitable block is found, it is
removed from the list (retrieving its predecessor can be done efficiently by using a
doubly-linked list), and a pointer to the usable part of the block (beyond the header)
is returned.

Deallocation can be done by inserting the block in the freelist following vari-
ous possible criteria (such as keeping it sorted by block addresses) [48|. Various
approaches have been developed to minimize fragmentation: large blocks may be
split at allocation to obtain smaller blocks and adjacent free blocks may be merged
to obtain larger blocks. In this last case, this is also called coalescing and may be
done at deallocation in constant-time due to the use of Knuth’s boundary tags [80),
Chapter 2.5].

To improve performance by reducing the search space for a suitable block when
allocating, it is also possible to maintain a set of linked lists, forming a partition by
size of all free blocks: the equivalence classes are called size classes. This approach
is called segregated free lists and is useful for various means, as we will see. Size
classes may either be interval of integers, thus providing variable allocation sizes;
or singletons, providing fixed allocation sizes. In the rest of this document, we only
consider the latter case. Buddy allocators form a particular case of this setting, where
all size classes are powers of two. The use of size classes can help reducing external
fragmentation at the possible cost of increased internal fragmentation, depending on
requested allocation sizes. Last but not least, if each sizeclass is given one segment
of the heap whose address and size is known, determining the size of a block may be
done by only using its address. In this setting, there is no need to store size as part
of the metadata for each block, as it is encoded as one underlying memory layout
invariant. This can improve performance through less memory accesses and help
with code complexity.

2.1.2 C standard APIs and other functions: many required
APIs

Beyond malloc and free, the C89 standard already included other functions:
calloc and realloc. Additionally, as we will see, alignment handling is also re-
quired as part of more recent C standard APIs, in addition to other expected mem-
ory management functions outside of the C standard. In this section, we present
corresponding challenges.

As previously mentioned, C89 was the first international C standard (ISO/IEC).
More recent revisions, also all ratified as international ISO/IEC standards, include:
C99, completed in 1999 and ratified in 2000 [81]; C11, completed and ratified in
2011 [82]; C17, completed in 2017 and ratified in 2018 [83]; and finally C23, the
current C standard, completed in 2023 and ratified in 2024 [84].



2.1. MEMORY ALLOCATORS: DESIGN AND IMPLEMENTATION 19

2.1.2.1 C89 calloc: zeroing and an infamous multiplication on top of
malloc

Let us consider the prototype of calloc. This function is rather similar to
malloc and as we will see, can use malloc as a basis. It has two parameters
of type size_t nb_elem and size_elem; its return value is a void* pointer. If
allocation succeeds, the returned pointer points to an allocation suitable for an
array of nb_elem elements, each of these being of size size_elem. Furthermore, in
this case, the returned allocation, that necessarily is of size greater or equal than
nb_elem x size_elem, must be initialized with zeroes. Otherwise, in case of failure,
a null pointer is returned.

void* calloc(size_t nb_elem, size_t size_elem);

This function can be implemented as a call tomalloc requesting nb_elemxsize_elem
bytes followed by zeroing. This however requires extra care as the incurred multi-
plication can lead to integer overflow. A calloc example without such a check is
part of the BadAlloc memory allocation vulnerabilities [21].

2.1.2.2 (CB89 realloc: requires metadata about allocated blocks

As we will see, realloc is a more complex function. This function can be used
to resize a memory allocation, either to shrink it or to expand it, possibly at the
cost of using a new memory block at a different address, which requires in that case
to copy its content. realloc has two parameters: ptr of type void* and new_size
of type size_t; its return value is a void* pointer.

void* realloc(void* ptr, size_t new_size);

In order to be precise, let us cite the C89 standard. “The realloc function changes
the size of the object pointed to by ptr to the size specified by |[new_size|. The
contents of the object shall be unchanged up to the lesser of the new and old sizes.”
Importantly, as implied by the standard, the memory allocator is required to know
the size of all currently in-use memory allocations.

There are four different cases that realloc must handle.

e If ptrisanull pointer, then the behaviour should be the same asmalloc(new_size).

e If ptr is a valid pointer but that does not correspond to a memory block
allocated by malloc, calloc or realloc, this corresponds to a UB.

e If ptr is a valid pointer corresponding to a memory block allocated by malloc,
calloc or realloc and new_size > 0, it can be assumed that the allocator
has access to the size of ptr as part of its metadata: we note it o1d_size. The
allocator can thus determine whether the existing allocation should be shrinked
or expanded. Depending on the memory layout, this can be done in place or
through a new memory allocation noted new_ptr (e.g., using malloc) of size
new_size, with the min(old_size,new_size) first bytes of ptr being copied
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to new_ptr: any possible rest of the allocated memory block is uninitialized;
ptr is then deallocated (e.g., using free). A null pointer is returned and the
content of the memory block corresponding to ptr is left unchanged should
any failure occur.

e [f new_size = 0, assuming ptr is pointing to a previously allocated memory
block (by malloc, calloc or realloc), C89 specifies that the behaviour should
be the same as free(ptr). C99 and Cl11 do not specify it: according to
these standards behaviour is implementation-defined. As foreshadowed by its
deprecation in C17 [85|, this case corresponds since C23 to a UB.

As is the case for calloc, it should be noted that this “swiss-army knife” function
can be implemented using malloc and free. It should however be noted that this
is not always the most efficient solution. One example is that the reallocation of
large allocations may be done more efficiently in Linux environments by using the
specialized mremap system call |86, Chapter 49.8|.

2.1.2.3 C11 aligned_alloc: requires alignment handling

While C99 did not introduce any memory management-related new function,
C11 introduces a new function: aligned_alloc. Its key new feature is that it
allows one to specify the required alignment for requested memory allocations: let
us first define alignment.

MemoryP| may be viewed by one process as a single very large array of bytes:
in this large array, each byte can be identified by its offset, also called its address.
However, in general, computer systems restrict the set of addresses that can be used
to store data, “requiring that the address for some objects must be a multiple of some
value K (typically 2, 4 or 8)” |48]. C89 already specified that a pointer returned
by memory management allocation functions is “suitably aligned so that it may be
assigned to a pointer to any type of object”, further refined by C11 “... object with a
fundamental alignment requirement”. In practice, this means that such an allocation
must have as minimal alignment the largest fundamental alignment: C11 provides
a suitable upper bound in the form of the size_t value _Alignof (max_align_t),
equal to 16 on a x86_ 64 machine. As a consequence of that, since C11, all pointers
returned by memory management functions on x86 64 machines must be at least
16-bytes aligned (i.e., their address is a multiple of 16).

Coming back to aligned_alloc, this allocation function allows client programs
to specify stricter alignment as required. Beyond alignment, it is very similar to
malloc. It has two parameters of type size_t: alignment and size and its return
value is a void* pointer. If allocation succeeds, the returned pointer points to
an allocation whose alignment is specified by (and thus is greater or equal than)
alignment, whose size in bytes is greater or equal than size and whose content is
uninitialized. In case of failure, a null pointer is returned.

1 void* aligned_alloc(size_t alignment, size_t size);

5Virtual memory in this setting.
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If size is not a multiple of alignment or if alignment does not correspond to
an alignment supported by the considered implementation, a null pointer must be
returned. While the C11 standard specifies that an alignment is a “nonnegative
integral power of two” of type size_t, the subset of alignments to be supported by
a memory allocator is interestingly implementation-defined.

Implementing aligned_alloc can be done through the use of a buddy allocator.
Indeed, all objects part of the 2F size class are naturally aligned, assuming that the
start pointer of the considered size class is suitably aligned.

2.1.2.4 (C23 free_sized and free_aligned_sized: additional metadata to
detect UBs?

C17 did not introduce any new feature, focusing instead on clarifications and mi-
nor fixes; memory management functions were mostly left unaffected. C23 includes
two new memory management functions: free_sized and free_aligned_sized.

void free_sized(void* ptr, size_t size);
void free_aligned_sized(void* ptr, size_t alignment, size_t size);

These two deallocation functions are quite similar to the free function, with two
main differences.

On one hand, using these functions require client programs to keep track of the
previously requested allocations: of their size for both, and of their alignment when
using free_aligned_sized.

On the other hand, they also require zealous memory allocators that aim at de-
tecting UBs to keep track of whether allocations were provided by aligned_alloc
or other functions. Indeed, deallocating any other allocation than those provided by
aligned_alloc using free_aligned_sized is specified as UB; conversely, deallocat-
ing any aligned_alloc-provided memory block using free_sized is also specified
as UB.

The stated interest at the time such functions were proposed depends on the
considered setting [87]. On one hand, when focusing on performance, retrieving
the size class associated with one object to be deallocated can be costly: avoiding
incurred operations improves performance. On the other hand, in security-oriented
settings, this enforces heap consistency onto client programs and can be used for
hardening.

2.1.2.5 De facto required functions outside of the C standard

The bestiary of functions required to implement a memory allocator usable as a
drop-in replacement for real-world programs does not stop here. Indeed, there exists
many functions that are de facto required, as they fall outside of the C standard.

As previously mentioned, the history of the Unix operating system and that
of C are entangled. Notably due to the availability of its source code, Unix has
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inspired many operating systems that have been since then characterized as “Unix-
like” [48, Chapter 1|. The POSIXE] standards emerged in the 1990s as a response
to the need of portability for software across this family of OSes. POSIX has been
successful in providing uniform abstraction for diverse operating systems systems,
including Linux distributions, Apple’s macOS and Android [88]. Specifically, POSIX
standards include a standard C library, itself a superset of the ISO C standard: the
POSIX 2024 issue defines extensions over the ISO C standard memory management,
using C17 as a basis [89, p.612]. In particular, POSIX includes since 1999 the
following posix_memalign allocation function.

int posix_memalign(void** memptr, size_t alignment, size_t size);

This function provides aligned allocations and is very similar in that sense to aligned_-
allod’| The main difference is that the allocation pointer is not returned but written
at the address pointed to by memptr, hence the extra level of indirection in its typef]
Additionally, the returned integer is 0 on success, and non-null otherwise, mimicking
errno [89, p.1576].

So far, we only did not name any concrete, actually used C standard library
implementations. The most commonly used libc in (non-embedded) Linux envi-
ronments is the glibcﬂ |86, Chapter 3.3]. As a consequence of this, a number of
non-POSIX features that are part of the glibc are commonly relied upon by client
programs. One of these is the memory management malloc_usable_size function.

size_t malloc_usable_size(void* ptr);

It is neither an allocation nor a deallocation function: instead, it provides a user
with coarse access to the internal memory allocator bookkeeping. This function can
be used to retrieve the size of a previously allocated memory block. Provided ptr
is a previously allocated memory block, the returned value is only specified to be at
least that of the size of this memory block, thus possibly larger than the originally
requested size. If ptr is NULL, the returned value is 0 [92].

Other obsolete GNU extensions are still expected by a number of programs. As
a matter of fact, the glibc documentation requires a replacement allocator to also
provide the following functions [93].

void* memalign(size_t alignment, size_t size);
void* valloc(size_t size);

void* pvalloc(size_t size);

void* cfree(size_t size);

SPortable Operating System Interface

"posix_memalign actually appeared before aligned_alloc.

8voidx* corresponds to a pointer to a void* pointer.

9Also called the GNU C Library; the Linux kernel and the GNU Project have long been closely
related; as an example the GNU toolchain always has been the default to build Linux [90]. There
also exists other Linux general-purpose libc implementations such as musl [91].
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memalign is similar to aligned_alloc, though less restrictive, as the size is not
required to be a multiple of alignment; valloc returns a memory allocation of
at least size bytes that is page-aligned; pvalloc is valloc-alike but rounds the
requested allocation size up to the next multiple of the system page size; cfree is a
very obsolete free-like deallocation function.

2.1.3 Concurrent memory management: thread-safety and
scalability

In this section, we present challenges associated with the implementation of a
thread-safe, scalable memory allocator, suitable for highly-concurrent settings. Back
in the early 1990s, shared-memory processors (SMP) (or multi-core processors) were
already in use. In 1998, Larson and Krishnan [94] already identified a set of design
constraints for memory allocators used in concurrent settings by long-running client
programs on SMP systems. Among them, the need for scalability: allocators “must
support highly concurrent operations and execution in SMP systems, ideally scaling
linearly with the number of processors” [94]. In 2000, it was noted that “Parallel,
multithreaded C and C-++ programs |...| are becoming increasingly prevalent” with
the then emergence of SMP systems, prompting Berger et al. [52| to develop the
Hoard memory allocator aimed at scalability.

2.1.3.1 Thread safety

Outside of performance considerations, a memory allocator supporting concur-
rency is required to be thread-safe. Thread safety can be defined the following way:
“a function is said to be thread-safe if and only if it will always produce correct
results when called repeatedly from multiple concurrent threads” [48, §12.7.1|. In
order for a memory allocator to be thread-safe, all of the memory management
functions it provides must be thread-safe.

There are two main approaches to thread safety: either by not sharing variables
between threads; or, when unavoidable, by controlling this sharing between threads
through synchronization, e.g., through mutual exclusion, that is, by ensuring that
each thread has mutually exclusive access to resources [48, §12.5.1]. In the first
case, one could imagine that it could be specified that a thread cannot interact with
memory blocks allocated by another thread (spawned by the same process). This
would be utter nonsense, as the use of threads for concurrent programming would
lose any interest in this setting; furthermore, the heap is part of virtual memory,
which is shared between threads. As outlined by Larson and Krishnan, “a [memory]|
block must not be tied to the thread that allocated it [...] it should be possible for
one thread to allocate a block, a second thread to use it, and a third thread to free it
(even if the original thread has already died)” [94]. Thus, thread safety is necessary.

There exists various approaches for synchronization between threads: mutual
exclusion through the use of locks, lock-free data structures as part of non-blocking
algorithms, and message passing. All of these have been used in practice [95, 96|;
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for the sake of simplicity, we will only consider locks.

Using locks, one way to provide thread safety is to have one lock used by all
memory management functions so that only one thread can be using one such func-
tion at a time. However, using a single lock (more precisely, a mutex) would be very
costly, as this would result in a lot of contention: many threads would be waiting
to lock the mutex, resulting in “compute congestion” [97].

Another way to proceed is to use more fine-grained locks. Reusing the previously
presented basic memory allocator design relying on segregated free lists, partitioning
free space into size classes, using one lock per size class reduces contention.

2.1.3.2 Scalability and false sharing

As noted by Larson and Krishnan, while using one lock per freelist indeed re-
duces contention, this approach does not provide the expected scalability improve-
ments [94]. They attribute this to what they call “cache sloshing”, later called “false
sharing” 52|, an issue related to poor cache utilization by multithreaded programs
on multicore systems. Cache is a complex topic on its own: let us present briefly
what is at stake here.

In the setting of computer architecture, efficient access to data that need to be
processed is of utmost importance. To avoid a related possible bottleneck, a variety
of mechanisms exist, including caching. The key idea of caching is that providing
faster access to only a subset of all accessible memory can lead to performance
improvements. SMP systems can be coarsely described as a set of cores all having
access to one shared memory, in addition to each core being equipped with one
cache[l7] These caches all store segments of memory of the same fixed size into cache
lines. In practice, when a core must fetch data from the shared memory, it first
checks whether this data is present in its cache: if so, it retrieves it directly from the
cache (cache hit); otherwise, it retrieves it from the shared memory (cache miss)
and replaces existing data in its cache by the just-retrieved data[T] Data fetched
from caches must be consistent with the shared memory: when a memory location
corresponding to data present in the cache of one core ¢; is updated by another
core ¢y, this requires synchronization between c; and cy. False sharing occurs when
a same memory segment fitting into one single cache line is continuously updated
by two threads executed on two distinct cores 52|, leading to performance penalty
associated to the corresponding synchronization cost.

Back to the setting of segregated freelists, when several threads handle allocations
belonging to the same sizeclass, this results in updates to the same freelist, albeit it
is protected by a mutex. This can result in some segments of memory (each fitting
into one single cache line) being continuously updated by two distinct threads on
distinct cores, resulting in false sharing and thus limiting scalability.

10Tn practice, modern CPUs are diversely equipped with many different caches forming a cache
hierarchy as well as additional specialized caches, e.g., to improve the performance of virtual
memory.

HTn practice, there exists a wide range of cache policies in the literature, further details are not
needed here.
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One way to mitigate this is to improve per-thread locality (and thus per-core
locality at runtime) of data structures handled by the memory allocator: to this end
“subheaps”, also referred to as “arenas”, can be used |94} 51]. Concretely, we can think
of it as a number n of copies of one memory allocator: each client program thread ¢
is assigned one such copy f(t) identified as an integer, such that for any thread ¢, the
following holds: 0 < f(¢) < n. The number of arenas n may be statically fixed [94]
or not; in most cases, arenas are not uniquely assigned to threads and rather shared
between some of the threads, but not all of them.

As previously mentioned, any thread may be faced with a deallocation request
of a memory block allocated by another thread: it is thus also required that all
threads, given a pointer to a memory block originally allocated by a thread ¢ that
must be deallocated, can identify the corresponding arena f(¢). In practice, this
technique works well due to the fact that, while such a case must be supported, this
does not correspond to the most common case in most settings [94].

All in all, this results in additional challenges and further fine-grained bookkeep-
ing required as part of the memory allocator implementation. Many modern memory
allocators rely on a variation over this idea and try to improve per-thread locality:
this is the case for jemalloc [51]; for the glibc malloc, also called ptmalloc2 [98|; for
mimalloc [99]; as well as for hardened malloc [100], among many others.

2.1.4 Hardening allocators for misuses of APIs: additional
complexity

In this section, we present challenges associated with the implementation of
security-oriented memory allocators aimed at mitigating memory safety issues. Mem-
ory safety issues have a long history, and have been exploited since early in the com-
puting history [101]. Furthermore, we already stated that their pervasive impact
has many measurable consequences and that hardening memory allocators can be
practically used to mitigate them.

It may thus be surprising that on most Linux versions the default C memory
allocator, that is named ptmalloc2 and is part of the GNU C standard library (also
named glibc), is vulnerable to various exploitation techniques [102]. As we will see,
this is partly due to the fact that it relies on the freelists techniques that we have
presented in previous sections.

On the opposite, there already exists many other memory management tech-
niques used as part of hardened memory allocators implementations, each aimed at
mitigating some classes of memory safety issues. The resulting set of diverse ap-
proaches reflects various security tradeoffs, related to just as many various execution
settings. We will here present some security mechanisms to show that implementing
hardened memory allocators require specific, additional implementation efforts due
to incurred complexity.
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2.1.4.1 Memory safety issues typology and C lack of safeguards

As part of this technical background, we presented the collection of simple APIs
that memory allocators must support in practice, briefly describing that they re-
quire client programs to respect several invariants. Memory safety issues precisely
corresponding to the violation of these invariants and can be classified into two sorts:
spatial safety issues and temporal safety issues [37, [103]. In this setting, we only
consider heap-related memory safety issues.

On one hand, spatial safety issues correspond to memory accesses to locations
that are outside of the bounds of currently valid objects. They encompass the
following heap-related memory safety issues subclasses.

e (Heap-based) Buffer Overflows [104]: a subcase of out-of bounds writes. Such
an issue is used by the EternalBlue exploit |25].

e (Heap-based) Buffer Over-reads [105]: these are out-of bounds reads. This is
the root cause of the Heartbleed vulnerability [17].

Such issues are due to the fact that C supports the use of raw pointers and associated
pointer arithmetic, and lacks bound checking, statically as well as at runtime.

On the other hand, temporal safety issues correspond to invalid handling of
objects that are not currently valid.

o Use-After-Frees (UAFs) [106]: when free has been called to deallocate a
pointer, this pointer does not point to a valid block and is called a dangling
pointer: any subsequent use of it is invalid. The issue with such bugs is
that corresponding memory may be later reused, possibly corrupting data and
breaking invariants of the client program.

e Double-Frees [107]: when free is called twice on the same pointer, such
that the corresponding memory location has not been reallocated in between.
Double-Free can lead to the corruption of the allocator’s metadata when it

relies on freelists |37], as we will see in Section [2.1.4.2]

e Invalid Frees [108] (included as temporal safety issues by [109]): when free
is called on a pointer corresponding to a memory block that has not been
allocated by a heap management function.

e (Heap-based) Uninitialized reads [110, [I111] (included as temporal safety is-
sues by [112]): when reading memory from an allocated block that has not
yet been initialized. The C standard does not require memory allocators to
initialize memory, as we have seen (e.g., using malloc); due to memory reuse,
uninitialized reads can lead to information leakage.

Most of these issues can be prevented by automatic memory management, consid-
ering cases where destroying objects cannot be done manually [37].

Double frees and invalid frees highlight that input validation is required when
implementing free. Lack of input validation can result in other issues slightly harder
to classify, such as the BadAlloc integer overflow vulnerabilities due to the lack of
input validation for allocation functions |21} [20].
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Figure 2.1: Memory layout of free and used blocks with freelist headers.

free block size next prev free space

used block size usable space

2.1.4.2 A case in point for protecting metadata: corrupting freelists
metadata

Let use reuse a simple segregated free lists allocator with no cache, assuming all
elements inside a given free list have exactly the same size. We further assume that
when allocating, the first pointer in the freelist is used; and that when deallocating,
the pointer is put back at the head of the freelist. Finally, we assume that the layout
of free blocks and used blocks is the one presented in Figure 2.1} Free blocks and
used blocks only share in common that their header contains the underlying block
size: other metadata are not useful for allocated blocks as these are not part of the
free list. As we will demonstrate, using a single double-free allows one to force the
allocator to return an arbitrarily-chosen pointer as one of the next allocations.

The main idea is to break metadata invariants, which in this setting correspond
to the wellformedness of the linked list, so that one memory block ends up in an
ambiguous status. To this end, let us have a look at the following malloc/free
sequence. At some point, there will be one memory block at the same time corre-
sponding to a valid allocation and present in the freelist.

e a=malloc(16)
e b=malloc(16)

There may be an arbitrary number of allocations and deallocations in the sizeclass
between the previous step and the next step. In the following, let us describe for
each step the resulting freelist state in the form of a list traversal from its head,
only using the next field of each header. We denote by x - y a subset of the freelist
containing memory blocks x and y such that x.next points to y.

e free(a); the memory block corresponding to a is added to the freelist, such
that the next field of its header points to the previous head of the freelist
freelist.

We get the following: a — freelist.

e free(b); b is added to the freelist too.
Similarly, we obtain: b - a - freelist.

e free(a); this is the only invalid step from a memory safety perspective, cor-
responding to the second free of the considered double-free. a is added to
the freelist again, thus creating a cycle in the freelist (noted ---) and thereby
breaking its wellformedness.

This results in the following freelist: a > b > a — ---.
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Now, the exploit requires the second occurrence of a to be at the head of the freelist.
As long as a is not deallocated, there may be an arbitrary number of allocations
and deallocations between the previous step and the next step. In any such case,
the resulting memory layout will be suitable for exploitation.

e c=malloc(16); c is actually equal to a, as the first memory block in the free
list is used to provide memory.
At this point, all we know is that the two first blocks of the freelist are the
following: b — a. Indeed, the deallocation process may be such that the
prev and next header fields are reset when the underlying memory block is
allocated.

e d=malloc(16); d is actually equal to b.
Similarly, at this point, all we know is that the head of the freelist is a.

Let us recall that the memory layout is such that the address of the next field of
the header of an unused block is the same as that of the start of the allocation when
the very same block is allocated. A same memory location can thus correspond to
metadata or actually usable space depending on the status of the considered block.

e At this point, one can legitimately write within the ¢ allocation to corrupt the
freelist metadata: c[0] = arbitrary_ptr.
The beginning of the freelist then is: a - arbitrary_ptr.

e e =malloc(16); e is actually equal to a.
This results in arbitrary_ptr being the head of the freelist.

e f =malloc(16); we finally get a pointer f returned by malloc that is equal to
arbitrary_ptr.

In fact, this is the exact same sequence that an exploitation technique of the
freelist-based glibc allocator relies on, in addition to bypassing some basic pointer
protection in place [102]. Remarkably, the same repository [113] proposes a wide
range of exploitation techniques usable with the latest version of the glibc alloca-
tor, in addition to the one we just sketched. Overall, this argues for a dedicated
memory layout strictly separating memory allocations and corresponding metadata
in disjoint regions, so that metadata may be protected.

2.1.4.3 Mitigating memory safety issues subclasses through dedicated
security mechanisms

There exists a wide-ranging literature proposing various mitigations against C
memory corruption issues. We present a brief overview of security mechanisms that
can be implemented as part of a security-oriented memory allocator, noting that
the description of a rigorous threat model for each of these would be an endeavor of
its own. Acknowledging the limits of these short descriptions, we lay the emphasis
on the fact that such security mechanisms form a diverse set, sometimes mitigating
several memory safety issues subclasses at once.

Out-of-band metadata. Assuming that metadata placed in a region that is dis-
joint from that of allocations and placed at an address that cannot be guessed by
an attacker (e.g., due to the probabilistic ASLR protection), this can be used to
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deterministically detect double frees or invalid frees. This is useful since these can
be leveraged to corrupt metadata, as presented in previous section.

Zeroing. On one hand, zeroing allocations when they are deallocated can help
with leakage of data, e.g., due to a use-after-free. On the other hand, zeroing allo-
cations at allocation time before they are provided to client programs can mitigate
uninitialized memory use. If zeroing-on-free is performed, then only checking that
the considered block is still zero-initialized is enough.

Heap canaries. Analogous to stack canaries |114], these are values placed at the
boundaries of memory allocations at allocation and checked at deallocation, thus
possibly detecting buffer overflows[?]

Guard pages. The OS enforces permissions regarding memory at the pages gran-
ularity. To detect large buffer overflows as soon as they occur and not when closest
allocations are deallocated, one can intersperse with pages used for allocation other
pages that do not have read nor write permissions, also called guard pages. Any ac-
cess to such pages leads to a memory fault, which generally results in the termination
of the program.

Quarantine. Quarantine aims at limiting the reuse of a memory allocation in
different contexts (possibly for values of different types), thus mitigating use-after-
frees [115]. This is done by delaying the reuse of freed allocations, through further
partitioning of the heap: quarantined allocations cannot be reused until they are
unquarantined.

2.1.4.4 Various adversarial settings: memory allocators as soft safety
nets or strict security-enforcing monitors

As we have seen, there exists a rich set of memory safety issues. Given one
memory allocator that is able to detect some of these issues, there are two possible
choices of implementation when a memory safety issue is detected: tolerating it so
that the execution of a faulty program may continue sparing users from impromptu
failures |116], or aborting the execution of the program as soon as such an error is
detected, as‘[m|emory errors in general allow the attacker to read and modify the
program’s internal state in unintended way” [37].

This corresponds to a trade-off between reliability and security. Indeed, consid-
ering an active attacker, in a setting where attacks do not hinder further attacks,
e.g., due to the fact that they do not result in crashes, repeated attacks will end up
succeeding [117].

It is thus extremely valuable for a security-oriented memory allocator to detect
any unexpected behavior. Arguably, the set of specified UBs that we detailed when

12In doing so, they can reveal an issue early, hence their name, by analogy with the canaries
used in coal mines.
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presenting memory management APIs required as part of the C standard are such
unexpected behaviors. However, as we have seen, the standard has been revised.
Given a valid pointer ptr and a bleeding-edge security-oriented memory allocator,
should realloc(ptr,0) lead to an application crash, considering this corresponds
to a UB since C23, published less than a year ago at the time of writing? Indeed,
one could play the devil’s advocate and argue that this could hypothetically be part
of a double-free memory issue, its detection may thus be hindered by tolerating
such deprecated use of realloc. This, in turn, argues for being unforgiving of such
backwards compatibility issues.

All in all, detecting memory errors is desirable from a security perspective: as
we have seen, this can be done through a dedicated memory layout putting alloca-
tions and metadata in disjoint memory regions and additional security mechanisms.
Aborting the execution of the entire process corresponding to the client program
when detecting some API misuse can be reasonable in many cases. Configurable
security mechanisms and response to such issues however seems like worth sup-
porting for a real-world hardening memory allocator, as it is likely to be used in
heteregeneous settings.
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2.2 Separation Logic and the Steel verification frame-
work

Introduction

In this section, we present the Steel verification toolchain, that provides users
with a Concurrent Separation Logic embedded within the F* programming language,
targeting low-level programs. Such programs, once verified using Steel, can be ex-
tracted to C code using the KaRaMeL tool that provides extraction of low-level F*
programs to C code. We rely on this entire toolchain as part of our contributions,

see Chapter [3]
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2.2.1 A primer on Concurrent Separation Logic

In this section, we successively present Hoare Logic (for sequential programs)
in Section [2.2.1.1}; Separation Logic (for sequential programs), an extension of Hoare
Logic, in Section [2.2.1.2} and finally, Concurrent Separation Logic in Section [2.2.1.5]

2.2.1.1 Hoare Logic

Hoare Logic [59] is a formal system to rigorously reason about the correctness of
computer programs. Core to Hoare Logic is the notion of a Hoare triple, written:

{P}c{Q}.

This logical statement asserts that in any state satisfying the precondition P, the
execution of the program ¢, it if terminates, produces a state satisfying the post-
condition (). As this statement does not specify all possible behaviours of ¢, it is
called a partial correctness triple. Similar statements capturing that ¢ necessarily
terminates are called total correctness triples but are not used in the remainder of
this document.

Let us give an example of a simple partial correctness triple, assuming a simple
language:
{x>0y=a{x>0ny=21}.

In this setting, the precondition is that the x variable is a positive integer, the y
variable is assigned with the value of z, resulting in a postcondition reflecting that.
A less precise postcondition, such as Q =z >0 Ay >0, would also be valid.

Considering Hoare triples, we implicitly considered a programming language and
its semantics used to describe c. In addition to this, P and () are assertions also
called state predicates, as they describe underlying states. This requires a corre-
sponding assertion language: first-order logic can be used as such. The considered
programming language’s basic features can be precisely specified using triples, corre-
sponding to axioms['3| Using all of this, Hoare triples about programs can be derived
using sound reasoning rules.

Their author envisioned their use to prove programs through deductive reasoning,
with the aim to achieve the production of programs that would be at the same time:
1. reliable, thus avoiding consequences of programming errors; 2. portable across
machines; 3. equipped with correct documentation, thus making easier iterative
development [59]. In particular, regarding 3., Hoare considered using specification
as documentation to achieve compositional development.

“l...] when it becomes necessary to modify a program, it will always
be valid to replace any subroutine by another which satisfies the same
criterion of correctness.”

While it proved very useful, modular reasoning using Hoare Logic turned out to
be difficult when handling low-level programs using pointers, especially in presence

I3Hence the term aziomatic semantics.
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of aliasing [118]. These limits are all the more important since, as Zhirkov puts
it in the context of low-level programming using C, in general, “every pointer is a
source of possible memory aliasing” [50].

2.2.1.2 Separation Logic: an extension of Hoare Logic

The need to reason on low-level programs using such idioms prompted the de-
velopment of Separation Logic (SL) [118, 61|, that can be defined as a refinement
extension of Hoare Logic [62]. Triples {P}c{Q} also exists in Separation logic, with
the difference that in this setting P and () restrict the set of accessible resources for
the execution of ¢, enabling local reasoning.

In particular, P and () are heap predicates; specifications defined using the asser-
tion language describes heaps, that is, parts of the memory. As a first approximation,
let us describe heap predicates the following way. A heap predicate can be [62]:

e empty, usually written emp or [];

e 7~ v, a “‘points-to” assertion atom, also called a resource assertion, describing
the ownership of a single memory cell allocated at address r, whose content is
U3

e [P], a pure predicate characterizing an empty heap and asserting that the
proposition P is true;

e H, x Hy, describing a heap that can be split into two disjoint parts, one satis-
fying the heap predicate Hi, the other one satisfying the heap predicate Hj;
the = operator is the separating conjunction, sometimes also called the spatial
conjunction.

Now, let us take some basic examples. Let us first consider one reference r whose
initial value is v and is then assigned the value 42. The following triple holds:

{r—uv}r:=42{r - 42}.

Indeed, once the assignment has occurred, the reference r points to the value 42.
Similarly, let us consider two references r; and r, whose initial values respectively
are v; and vy. Assuming the usual textbook swap function that exchanges the values
of two references, the following triple also holds:

{ri = v xry > vy} swap(ry, 7o) {11 P> V2 * Ty > U1}

Furthermore, this triple can serve as a concise specification for the swap function.

Separation logic can also be leveraged for the formal verification of low-level data
structures. Let us use linked lists to give an example of predicates associated with
such a data structure. A non-cyclic linked list can be defined using the following
textbook recursive predicate, assuming list cells with two fields, respectively to store



34 CHAPTER 2. BACKGROUND

data and a pointer to the next cell; we directly reuse the definition from Charguéraud
[62].

MList L p = match L with
| nil - [p = null] (2.1)
|z L' —> 3q. (p~ data=2x) * (p~ next = q) » (MList L' q)

If L is an empty list, then the associated pointer p must be null. Otherwise, let us
denote x the head of the list and L’ its tail; p points to a cell such that its data field
is equal to x and its next field (the pointer to the next cell) is equal to ¢ such that
MList L’ ¢ holds, thereby asserting that the tail of the list is valid in memory.

2.2.1.3 The frame rule and allocation freshness

Beyond specifications with respect to memory ownership inside data structures,
one of the things that make Separation Logic very interesting to reason about pro-
grams is the frame rule, as it allows for modular reasoning.

Informally, the frame rule states that if a program ¢ can be executed correctly
using only some part of the memory, then the rest of the memory should remain
unaffected by the execution of c.

More formally, if a program c can be evaluated in a state described by P, then,
given any heap predicate R, it can be evaluated in a extended heap described by
P x R, producing an extended heap described by the corresponding postcondition.

{P}c{Q}
{P R} c{Qx R}

FRAME

As an example, one can deduce from the previous example regarding reference as-
signment the following, only by applying the frame rule to add the heap predicate
r e

{revxr o} r=42{r»42xr"»0'}.

In an analogous manner, from the (slightly-adapted) following allocation specifica-
tion:

{emp} r:= alloc() {r~ _},

one can deduce the following by applying the frame rule to add the heap predicate
r’ — v, thereby deriving a freshness property for the just-allocated reference r [62]:

{r'=v'}r:=alloc(){r— _*»r' =}
Indeed, the frame rule actually amounts to an universal quantification on the rest of

heap: whatever reference already is allocated, it is disjoint from the just-allocated
one.
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2.2.1.4 Separation logic and memory management

Regarding previously mentioned memory-safe languages, it should be noted that
programs verified using separation logic, even when considering the partial correct-
ness case, are guaranteed to be exempt from memory faults, as noted by Reynolds
[61]. In the same research article, Reynolds mentions that Ishtiaq and O’Hearn [119],
paraphrasing Milner [120] about its own famous type soundness result, underlined
that their triples semantics is aligned with the slogan “well-specified programs [do
not| go wrong”, even when considering memory disposal.

Beyond allocation, Reynolds, Ishtiaq and O’Hearn proposed in these seminal
papers that operations on references such as accessing, updating, allocating and
deallocating references can be associated with the following triples, assuming a basic
imperative language with heap management |61, |119).

{prv}a=read(p) {[xr=v]*p v}

{prvip=v{p~}
{emp} r:=alloc() {r— }

{p = v} free(p) {emp}

Overall, separation logic provides a fine-grained tracking of memory resources,
using ownership expressed using points-to assertions and separation of resources
thereby controlling aliasing using the separating conjunction. In addition to this,
there exist other connectives as well as variations over the frame rule [62] that are
not needed in the rest of the document.

Finally, we shortly presented a version of separation logic that does not allow
one to discard part of the heap, keeping track of all resources: this is well suited
for languages relying on explicit memory management. There also are affine sepa-
ration logics that allow such discards, especially useful when considering languages
equipped with garbage collection [62].

2.2.1.5 Concurrent Separation Logic

The development of Hoare Logic was at the time followed with numerous develop-
ments, including the defining semantics of various sequential programming languages
and the support of their features [121]. In addition to these, some other extensions
targeted reasoning on concurrent programs, including pioneering work from Susan
Owicki and David Gries [122]. In their opinion, it is even more important to reason
on concurrent programs relying on parallel programming as nondeterminism can
emerge from the “unpredictable order in which actions from different processes are
executed”.

As the executions of two parallel processes can be interleaved, this can indeed
lead to a large number of possible sequences of steps, where each step corresponds
to the action of one process. Such interleavings can be described using interleaving
semantics, assuming a sequentially consistent memory model [123]: interleaving are
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made of atomic (or “uninterruptible” per Park’s wording [124]) processes actions.
As noted by Anderson and Gouda [125], this model can be used to treat concurrent
programs as sequential nondeterministic ones, which simplifies formal reasoning.
Alas, again, pointers limited reasoning on shared-memory concurrent programs.

Concurrent Separation Logic |64, 63] is an answer to the need to reason on
concurrent programs using pointers to manipulate shared-memory. This extension
over SL brings one main rule, the parallel composition rule, generalizing the frame
rule.

{Piyei{@i} {2} ca{Q2}
{P1* Po} cif|ea { Q1 * Q2}

PAR

This rule of “disjoint concurrency” [63] also requires that considered threads operate
on disjoint portions of memory. More precisely, it is required that the program c;
does not modity free variables of P}, c;,Q); when 7 # j.

As noted by Brookes and O’Hearn in their 2016 retrospective paper [126] re-
garding Concurrent Separation Logic (CSL), CSL has since been enriched by many
extensions. One of them is the fact that points-to can be enriched by fractional
permissions, notably to support concurrent reads: a reference can be read concur-
rently without introducing data races, as long as it is not written to at the same
time. Last but not least, finer-grained memory sharing can be encoded using (dy-
namically allocated) invariants. In this setting, each invariant Ip is associated with
a separation logic predicate P that is only accessible atomically. This is useful for
several synchronization mechanisms, such as locks. Indeed, an invariant Ip can be
seen as a lock storing ownership of a predicate P.

2.2.2 An introduction to the F* proof-oriented programming
language

2.2.2.1 First definitions

F* is a functional programming language that is specialized for the purpose of
auto-active verification, a term coined by Leino and Moskal [127] that refers to the
combination of interactive and automated proofs. F*’s type system features depen-
dent typing and refinement types. Also presented as a proof-oriented programming
language [128| or as a verification-oriented programming language [129], it relies on
the Z3 SMT solver [70] to automatically discharge proof obligations.

This language, that can be considered as forming a proof assistant and a program
verification framework when including the corresponding toolchain, features effects
and tactics support: in both cases, they can be provided by the user, as we will see
later in Section [2.2.3

To familiarize ourselves with F*, let us consider a textbook example: vectors
that are indexed by their length.
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type vec (#a: Type): (n:int{n >= 0}) -> Type =
| Nil: vec #a O
| Cons: #n: nat-> hd:a -> tl:vec #a n -> vec #a (n+1)

Please note that n:int{n >= 0} corresponds to a refinement type describing the
sets of all integers n such that n > 0, that is, the type of natural integers that can be
abbreviated as nat in F*. Additionally, #n:nat means that for the Cons constructor,
this argument is implicit. The following definitions thus both typecheck and are
equivalent.

Cons #nat #1 1 (Cons #nat #0 2 Nil)

let vl : vec #nat 2

let v2 : vec #nat 2 Cons 1 (Cons 2 Nil)

In order to get a glimpse of F*’s proof style and use of automation, let us consider
the following example, that allows us to introduce several notions at the same time.

let rec add (x y: nat): Tot int
(decreases x)
= match x with
| 0 >y
| _>1+add (x - 1)y

On one hand, this example showcases the treatment of integers and the role of
the SMT solver with respect to the type system. This recursive function can be
automatically typechecked thanks to the SMT solver. More precisely, to typecheck
the line 5, the F* language proceeds the following way. First, refinements are un-
packed, we get that = has type int such that x > 0. As pattern matching allows
one to exclude previous cases, one can deduce from line 4 that x # 0 in the case
corresponding to line 5. This information is sent to the SMT solver that deduces
that x — 1> 0. At this point, x — 1 can then be refined from an int to a nat.

On the other hand, while F* supports effectful programming, as we will see later,
we only consider purely functional programming for now. By default, functions
must be total: recursive functions must terminate. The only recursive call here is
add (x - 1) y: the process through which x —1 is proved to be a natural number
is already known; this recursive call is thus valid. Additionally, the use of the
decreases keyword guides the termination checker to consider a well-founded partial
order that is respected by the recursive call in order to prove termination.

As functions must be total by default, the Tot effect annotation¥] actually is
unnecessary; decreases clauses are not always necessary due to built-in heuristics,

M Effects in F* are described in Section [2.2.2.4
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see F* manual [130, section 7.4]. Indeed, the same code without the decreases
successfully typechecks.

This definition is a bit unsatisfactory, as we would like to prove that the result
of this function is a nat. Let us first examine an extrinsic proof.

val add_nats_is_nat (x y: nat)
: Lemma (add x y >= 0)

First and foremost, in F*, lemmas are functions that return the uninformative ()
value of type unit, then refined to carry useful information. The val keyword allows
one to define the prototype of a function: this forms the basis of the F* support for
interfaces.

Finally, let us provide an implementation of add_nats_is_nat, that is, a proof.

let rec add_nats_is_nat (x y: nat)
= match x with
0 ->0
I

_ -> add_nats_is_nat (x-1) y

let add_refined (x y: nat): nat =
add_nats_is_nat x y; add x y

This amount to a standard, expected induction proof, that is fairly short.

In this simple case, it would also have been possible to do everything at once
using nat as the result type. That is, to rely on an (almost empty) intrinsic proof,
instead of having to refine the add function a posteriori.

let rec add_nat (x y: nat): nat
= match x with
| 0 >y
| _ -> add (x-1) y

Once again, this works thanks to the SMT solver.

2.2.2.2 Basic interaction with F* and Z3

As previously hinted, the use of F* is interactive. One first way is to use F* is
to pass it files on the command line.

$ fstar.exe Example.fst
Verified module: Example.fst
A1l verification conditions discharged successfully
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However, this does not allow fine-grained interaction: in case of a proof failure, e.g.,
at the end of the file, attempting to fix this failure through edits to the corresponding
proof then requires to pass the whole file again to F*.

Another way to use F* is within a text editor or an integrated development envi-
ronment (IDE) through the use of dedicated plugins, e.g., the fstar-mode.el
plugin for the Emacs text editorE| As noted in F* manual section 2.1], this
allows for incremental progress over proofs contained in a file. Let us have a look at
what using this plugin looks like.

let rec add_nat (x y: nat): nat
= match x with
0 >y
| _ -> add (x-1) y

In this snippet of code, lines from 1 to 8 (highlighted in light blue) correspond to code
that has already been successfully checked by F*. Lines 9 to 11 (highlighted in bright
orange) correspond to code currently being verified. Lines 12 to 15 (highlighted in
light orange) correspond to code currently queued to be later checked. The rest
of the file is not queued for verification. As an example, in case of a failure to
verify lines 9 to 11, iterating over the corresponding declaration does not require to
check again lines 1 to 8. Any modification to already checked code results in the
verification status displayed using the previously described text highlighting being
updated to account for it.

In the previous paragraph, we only mentioned F*; in fact, as previously men-
tioned, F* heavily relies on Z3 to provide proof automation. To that end, F*
generates verification conditions (VCs) in the form of SMT queries associated to
considered programs and then calls the Z3 SMT solver to solve them. By default,

5There also exists plugins for the Visual Studio Code IDE as well as an unofficial one for
the neovim text editor @



10

11

12

13

40 CHAPTER 2. BACKGROUND

one single and thus possible large SMT query is sent for each definition to Z3 130,
section 30.1]. As we will shortly see in Section [2.2.2.3] it is possible to inspect SMT
queries and analyze their handling by Z3.

Let us introduce a few ways to control and assist the SMT solver’s action.

open FStar.Mul
let = assert(forall (x:int). x * x >= 0)

The assert keyword allows one to define an assertion, i.e. some property to be
checked. Unlike runtime assertions in other programming languages, in F*, these
are checked at compile-time, before any execution of the program. The considered
example does not involve any specific fact from the ambient set of definitions. This
assertion is indeed checked by Z3 using its arithmetic theory to handle non-linear
arithmetic (NLA).

Assertions in general play a key role when using F*. On one hand, they can
have side effects. It is quite common that adding specific assertions can help proofs
go through. On the other hand, when using F* interactive mode, contrary to other
proof assistant such as the Rocq theorem prover, there is no goal displayed when
working on a proof. Assertions thus allow the developer to check that some part of
the proof can actually be checked, before moving onto another part. Finally, they
can be used to document intermediate steps of the proof.

Assertions add properties to be checked to the (implicit, non-displayed) set of
current goals, that is, the set of properties to be checked by F* and Z3. When
developing or debugging a proof, it can be convenient to explicitly exclude some
properties from this set. This can be done using the assume or admit keywords.

In the following, with the help of some basic modular arithmetic lemma, let us
consider an ongoing proof by case analysis.

val lemma_mod_mul_distr_1 (x y: int) (n: nat{n > 0})
: Lemma
(x*y) hn==(~(x%n *y) %mn

let square_mod4 (n: int)
: Lemma ((n*n) % 4 < 2)
match (n % 4) with
0 -> lemma_mod_mul_distr_1 n n 4
1 -> assume((n*n) % 4 == 1)
-> admit ()

This proof by cases distinguishes between several cases depending on the value of
n 7 4. The first case where this value is equal to 0 is done, that is, the desired
property is proven to hold for that case, provided the lemma’s proof is accepted by
F*. In the case where n 7 4 is equal to 1, the assume keyword is used to force F*
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to consider an intermediate property valid. If the proof is accepted by F* as is, this
means that proving this property is sufficient to complete the proof of the lemma in
that case. It is noteworthy that this allows the developer to pinpoint the assumed
property as remaining work. Finally, in all other cases (where n % 4 is equal to
2 or 3), abbreviated using the _ pattern, the admit keyword is used to admit the
lemma’s goal in these cases, thereby temporarily skipping any further proof effort
and leaving them entirely as remaining work.

In some cases such as systems programming, external unverified functions may be
used. Thus, one may wish to go even further and assume that functions with desired
properties exist to further derive proofs from their use. The assume val keywords
combination can be used to that end. It should be noted that defining external
functions prototypes this way amounts to the axiomatization of their properties,
which needs to be done with great care. In the following, we give an example about
an external function whose purpose is to check whether the multiplication of two
64-bit unsigned integers would overflow. It is modeled as a total function and thus
should not have any side effect.

module U64 = FStar.UInt64
open FStar.Mul // tmport *
open FStar.UInt // import fits

assume val check_u64_mul_overflow
(x y: Ub4.t)
: r:bool{r = fits (U64.v x * UB4.v y) 64}

In this code snippet, U64.v is a coercion function from U64.t to nat. In the rest of
this document, the U8, U32, U64 and US modules respectively correspond to standard
library modules providing helpers for 8-bit unsigned integers (uint8_t in C), 32-bit
unsigned integers (uint32_t in C), 64-bit unsigned integers (uint64_t in C) and
the C size_t unsigned integer type. In all of these cases, for any module U, U.t
is the corresponding unsigned integer type and U.v is the corresponding coercion
function to nat.

2.2.2.3 Finer-grained interaction with F* and Z3 to tackle more complex
proofs

So far, we presented the use of F* and Z3 without any consideration for time
resources, only as an abstract machine that possibly answers “yes”. Things actually
are a bit more complicated, as the notion of timeout is core to the use of Z3. Indeed,
let us recall that SMT stands for the problem of satisfiability modulo theories,
which is undecidable for many theories such as nonlinear integer arithmetic. A
consequence of this is that, as Zhou et al. [134] put it while focusing on SMT queries
from automated program verification, “there is no guarantee that an SMT solver
will terminate”, hence the need for timeouts. Furthermore, proofs can sometimes
be quite long, as dividing lemmas into sublemmas is not always very practical nor
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efficient. Same authors [134] nonetheless lay the emphasis on the fact that program
verification relying on SMT solving remains iterative in practice, and that the proof
developer’s available time is a scarce resource. All in all, it is necessary to bound
the execution time of Z3 to prevent unreasonable execution times.

Thankfully, it is possible to tweak various Z3 parameters inside proof files using
pragmas such as #push-options and #pop-options. As previously highlighted,
the proof developer’s available time is important: she may thus be interested in
analyzing 7Z3 handling of SMT requests in order to optimize it. This is doable using
using the query_stats toggle.

#push-options "--query_stats"
let diophantine_eq_no_sol (_:unit)
: Lemma (7 (exists (x y:int). x*x + 1 = 4xy))

let aux (x y: int)
: Lemma
(requires x*x + 1 = 4xy)
(ensures False)

assert((x*xx) % 4 == 3);
square_mod4 x
in
Classical.forall_intro_2 (Classical.move_requires_2 aux)
#pop-options

This new block of code gives a glimpse of quantifier manipulations and nested
lemmas. Moreover, the auxiliary lemma aux has explicit precondition and post-
condition respectively as requires and ensures clauses. A lemma under the form
Lemma [...] is actually syntactic sugar for Lemma (requires True) (ensures

...

As query_stats is enabled, typechecking it yields the following log.
[F* 1 (<input>(18,3-27,58)) Query-stats (CH2.S22.AssumeAdmit.diophan-
tine_eq_no_sol, 1) succeeded in 3 milliseconds with fuel 2 and ifuel 1
and rlimit 5 (used rlimit 0.024)
The Z3 parameters z3rlimit, fuel and ifuel are very commonly tweaked. Let us
present them in that order.

When working on some tedious lemma, increasing the z3rlimit can be helpful.
Indeed, this parameter corresponds to the amount of resources that Z3 can use when
faced with some SMT request. It can be seen as a hardware-independent timeout.

#push-options "--z3rlimit 50"
let tedious_lemma ... = ...
#pop-options
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As an example, in this code snippet, z3rlimit is increased from the default value
of 5 units to 50 units.

Beyond the amount of resources that can be used by Z3, it is also possible to
control the way Z3 works. Indeed, as long as definitions are not behind interfaces,
the SMT solver has access to the actual body of these definitions. When handling
a proof about a recursive function, Z3 is able to unroll definitions: it is possible to
control to what extent Z3 actually does it. The fuel controls for all definitions how
many times they can be unrolled when handling one SMT request. Its counterpart,
the ifuel, controls inductive types unrolling.

While increasing fuel and ifuel can help when proving lemmas requiring defi-
nition unrolling, whether for concrete values or not, increasing it when not necessary
reduces proof performance. Indeed, in such situations, the SMT solver can spend
a great amount of time uselessly unrolling functions and types definitions. This is
why these parameters are most of the time set to small values, such as 0 or 1.

Regarding concrete values properties, let us consider the following example about
computing the length of lists.

let t1 = FStar.List.Tot.tl

let rec length (#a: Type) (1: list a): nat

= match 1 with

| [1 ->0

| _ :: t -> 1+ length t
let 11
let 13

[1]
[1; 2; 3]

The proof programmer may be interested in proving that the length of 11 and
13 respectively are 1 and 3. In what follows, the [@@ expect_failure] is the
syntax corresponding to specify that a definition is expected to fail, so that the
corresponding failure does not stop the verification of the considered file.

#push-options "--fuel 0 --ifuel 0"
[00@ expect_failure]
let _ = assert(length 11

1 + length (t1 11))

#push-options "--fuel 1"

let _ = assert(length 11 = 1 + length (t1 11))
// With fuel 1, this still fails

(0@ expect_failure]

let _ = assert(length 11 = 1)
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23 #push-options "--fuel 2"
24 // With fuel 2, this finally works
25 let _ = assert(length 11 = 1)

Finally, it is important to mention two last things. First, that it is possible to
set specific fuel/ifuel parameters for specific assertions, in a quite fine-grained
manner, when facing difficult proofs. Also, that F* ships a normalizer, a “reduction
machinery” section 1.4] capable to computationally reduce symbolic F* terms
but also to actually fully compute such terms in applicable cases. Here, assert_norm
relies on it.

27 // Modifying fuel for a specific assertion

2s #push-options "--fuel 0"

20 let _ = assert(length 11 = 1) by (let open FStar.Tactics in set_fuel 2; ())
30

s1 // Resorting to the mormalizer can help...

sz #push-options "--fuel 0"

33 assume val a: Type

34 assume val el: a

35 assume val e2: a

36 assume val e3: a

37 let _ = assert_norm(length [el; e2; e3] = 3)
38

s // ...but not in all cases...

10 [0Q expect_failure]

a let £ (#a: Type) (1: list a{length 1 = 3})
122 = assert_norm(length 1 = 3)

i // ...even simple ones!

1 let g (#a: Type) (1: list a{length 1 = 3})
s = assert(length 1 = 3)

At this point, further diving into the wide array of strategies to improve F* and
73 performance is not necessary. We restrict us to mention two noteworthy points.
On one hand, more information can be found about the use of Z3 by F* in F*
manual [130, Chapter 47], including marking definitions as opaque, designing SMT
patterns, and profiling Z3. As a last resort, F*’'s SMT encoding and resulting SMT
queries sent to Z3 can be inspected using the log_queries toggle. This allows one
to save SMT queries in a dedicated file on a per-definition basis, even though part
of the encoding corresponding to the ambient set of definitions may be included.
On the other hand, this very useful source of information does not yet include
documentation about the builtin F* profiler, that allows one to get information
about the execution time of various F* internal components beyond Z3 execution

time [T

16For example, through the use of the timing toggle and the following set of F* options providing
more precise information:
"--profile '*' --profile_component '*' --profile_group_by_decl".
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Equipped with many ways to interact with F* and Z3, we already hinted at
the use of assert and admit to develop and debug proofs. There exists many
verification frameworks relying on SMT solvers, whether natively or not, thereby
providing partial or full proof automation: studying, improving and debugging such
proofs is a broad topic in itself [134]. In this context, we lay the emphasis on
one very basic F* strategy that cannot be overlooked: the so-called “sliding admit”
verification style [135]. Given one incomplete proof to be debugged or developed,
assuming its signature typechecks, let us describe this strategy. First, insert the
admit at the beginning of the proof body. Then, let it “slide” along this very same
block of code while progressively ensuring that all intermediate proof steps before
the admit use actually are successful. Such proof steps may rely on assert or even
assume keywords, e.g., to pinpoint currently missing proof steps. At the end of
the process, the considered proof shall be improved if not complete. This technique
allows one to determine where proofs fail and thus refine proofs incrementally.

2.2.2.4 Effects

The programs considered so far are purely functional and their termination is
checked by F*. As previously mentioned, F* also supports a system of effects, en-
forcing that a given computation type can only depend on some specific computation
types |130, Chapter 25]. As we will see later, F* supports user-defined effects; in
the meantime, let us introduce F* primitive effects.

Total computations. The very first F* effect is the effect of total computations,
Tot. It lies at the bottom of the effect hierarchy: total computations can only depend
on other total computations. As previously seen, the effect of total computations is
the default one for function declaration. It is accompanied by the Pure effect, very
similar, albeit allowing one to explicitly specify precondition and postcondition of
total computations [130, section 29.3].

Ghost computations. Proof-oriented programming in F* requires one to prove
programs correct with respect to their specifications in a way that F* accepts it. In
this context, programs are enriched by ghost terms that are irrelevant with respect
to the actual computation. These computationally irrelevant parts of the program
do not need to be part of the final, compiled program: they can thus be erased
at compile-time. The effect of ghost computations, GTot, allows one to separate
computationally relevant and computationally irrelevant parts of the program. By
definition, a ghost term cannot interfere with the behaviour of a total term.

Using ghost terms as part of specifications or for proof purposes is very common:
F* provides the user with a specific library, FStar.Ghost [136]. Ghost terms are
encapsulated values encompassing GTot computations and erased values of type
erased t, where t can be any type.
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val erased (t: Type): Type

val reveal (#a: Type) (v: erased a): GTot a
val hide (#a: Type) (v: a): Tot (erased a)

reveal and hide functions provide a bijection between a and erased a. These
functions can be used to relate proof-related ghost values and data actually handled
by programs.

val hide_reveal (#a: Type) (x: erased a)
: Lemma (ensures (hide (reveal x) == x))
[SMTPat (reveal x)]

val reveal_hide (#a: Type) (x: a)
: Lemma (ensures (reveal (hide x) == x))
[SMTPat (hide x)]

To facilitate such type coercions, SMT patterns associated to the hide_reveal and
reveal_hide lemmas are also provided. These two lemmas can thus be automati-
cally instantiated by Z3 to relate a value v and its hidden counterpart hide v 130,
section 27.4].

Crucially, Tot can be used as part of GTot computations. Due to possible sound-
ness issues, the converse is not possible, except when the underlying type of the
GTot computation is not informative [130, section 27.5|. In this specific case, effect
promotion from GTot to Tot is possible, as demonstrated in the following.

open FStar.Ghost

// Tot used within GTot
assume val fl1: nat -> Tot nat
let f2 (x: nat): GTot nat = hide (f1 x)

// GTot used within Tot, specific case
assume val f£3: nat -> GTot nat
let f4 (x: nat): Tot (erased nat) = f3 x

In this code snippet, we first pick a total function f1 from natural numbers to
natural numbers. f1 is used to define a function £2 from natural numbers to ghost
natural numbers, thus demonstrating the effect promotion from Tot to GTot. We
then pick a ghost function £3 from natural numbers to ghost natural numbers,
that is used to define a total function f4 from natural numbers to erased natural
numbers. This demonstrates the effect promotion from GTot to Tot, as erased nat
is a non-informative type.
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Non-termination. In F*, total and ghost functions must terminate. Its effect
system allows one to express non-terminating or divergent computations, separating
such computations from its terminating core. It is the role of the effect of divergent
computations, Dv.

This case is interesting as it allows us to make a reminder that will be useful
in the next section. On one hand, as stated in F* manual |130] section 28.2], the
Tot effect has a total correctness semantics: if a term e has type Tot t, then the
evaluation of e terminates and produces a value of type t. On the other hand, the
Dv has a partial correctness semantics: if a term e has type Dv t, then the evaluation
of e may loop forever; in the case where it terminates, then the resulting value has
type t.

This allows one to write Dv computations like the following one, further moti-
vating careful separation of this effect from the logical core of F*.

let rec loop_false () : Dv False = loop_false ()

Indeed, Tot is a subeffect of Dv: no Tot computation can depend on the Dv effect;
this example thus does not lead to a proof of False in F*, thankfully. Finally, it
should be noted that it is not possible to do extrinsic proofs of Dv computations, as
specifications of lemmas rely on total computations.

2.2.3 Steel: a Concurrent Separation Logic embedded in F*

Steel is a higher-order, dependently-typed concurrent separation logic embedded
within the F* programming language. It provides the end user with a high level of
automation: verification conditions (VCs) are partially discharged by a mixture of
tactics and SMT solving [137].

Steel builds upon SteelCore |13§|, a semantics for a higher-order, dependently-
typed Separation Logic that has been formalized in F*, relying on F*’s support
for effectful programming. SteelCore provides partial correctness proofs of concur-
rent programs and support for user-defined partial commutative monoids (PCMs)
as well as dynamically allocated invariants to encode various memory sharing id-
ioms. Its soundness is derived from a definitional interpreter defined in F* using
effectful programming, modeling the execution of programs (or computations) as a
non-deterministic interleaving of atomic actions. In this setting, computations are
described as concurrent, potentially divergent and stateful using a Hoare triple alike
type SteelCore a p ¢, where a is the return type and p and ¢ correspond to sepa-
ration logic precondition and postcondition. Noting as vprop the type of separation
logic predicate, p is of type vprop and ¢ of type a - vprop, possibly depending on
the returned value.

Steel is the result of efforts to improve automation and thus usability in com-
parison to SteelCore. To this end, it describes computations using quintuples of the
following form.



48 CHAPTER 2. BACKGROUND

1 Steel a (p: vprop)

2 (q: a— vprop)
3 (requires (r: pre p))
4 (ensures (s: post p a ¢))

The newly added indices r and s are called selector predicates: they only depend
on the memory content of the initial memory described by p and the final memory
described by ¢. In this setting, pre p corresponds to the type of functions that take
as argument the heap content of a heap specified by p and return a first-order logic
predicate. Similarly, post p a ¢ corresponds to the type of functions that take as
arguments (1) the heap content of a heap specified by p, (2) a value of type a, (3) the
heap content of a heap specified by ¢ and return a first-order logic predicate.

The key idea is that this restriction enables the decoupling of proof obligations
respectively related to memory shape and memory content. On one hand, proof obli-
gations related to memory shape correspond to a frame inference problem: these can
be partially discharged by a dedicated tactic. On the other hand, proof obligations
related to memory content can be encoded using first-order logic and can thus be
partially discharged using SMT solving.

In this section, we focus on presenting Steel from a client point of view with
respect to the automation support it brings, that is, on its practical consequences
for the proof programmer.

2.2.3.1 First examples

Let us consider the textbook swap function again, recalling that its specification
using standard Separation Logic can be expressed using the following triple.

{riw vy *1rg > vg} swap(ry,re) {ri = vy * 1y > vy}

In this setting, memory shape and memory content specifications are blended al-
together. Let us know compare this with the Steel signature of the same swap
function.

1 val swap (r; 7ro: ref int)

2 : Steel unit
s (vptr r; * vptr ry)
4+ (fun _ -> vptr 71 * vptr 79)

5 (requires fun hg -> T)
¢ (ensures fun hg _ hy ->
7 hl[rl] == ho[?“g] AN

8 hl[TQ] == ho[Tl]

o )

In this code snippet, r; and 75 of type ref int are mutable references, analogous
to that of OCaml. The rest of the signature is as follows. On one hand, lines 3



2.2. SEPARATION LOGIC AND THE STEEL FRAMEWORK 49

and 4 correspond to the first couple of precondition and postcondition related to
memory shape. In each of these lines, the validity of a reference in the considered
memory (initial or final) is expressed using the vptr selector predicate. It should
be noted that vptr only specifies the shape of a fragment of the heap, not the
underlying content of the reference specified to be valid. The context only is made
of two valid references r; and r5, both at the beginning and the end of the execution
of the function. On the other hand, lines 5 to 9 correspond to the second couple
of precondition and postcondition related to memory content: the precondition is
trivial, and the postcondition asserts that the content of the two references has been
swapped, using the initial heap hy and the final heap h;.

Steel authors report on the fact that implementing this function can be done in
a very straightforward manner using the automation building upon the separation
between memory shape and memory content |137], in comparison with the imple-
mentation using SteelCore. As a matter of fact, this example does not require any
proof annotation, see the following code.

let swap rl r2 =
let x1 = read rl in
let x2 = read r2 in
write x1 r2;
write x2 ril

Steel supports a counterpart to the admit keyword used for total computations:
the sladmit keyword. This can be used to specify that any further proof effort
regarding memory shape proof obligations should be skipped, which is convenient
when developing or debugging proofs.

2.2.3.2 Combinators

This separation between proof obligations related to memory shape and memory
content is not always seamless. Indeed, in many cases the memory shape of the heap
can depend on the memory content of some other part of the heap. As an example,
let us consider textbook linked-lists.

Using textbook separation logic, as previously seen in Section [2.2.1.2] the sepa-
ration logic predicate corresponding to textbook linked-lists would be:

type cell (a: TypeO) = {
data: a;
next: ref (cell a);
}
let t (a:Type0) = ref (cell a)

let rec 1llist (p: t a) (1: list a) = match 1 with
| [1 -> pure (p = null)
| x :: tl -> 3q. pts_to p {data = x; next = q} » 1llist q tl
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It should be noted that the use of an existentially quantified variable ¢ (line 9) is
required here since 11ist is a pure separation logic predicate, that is, not linked to
any actual memory. Thus, directly accessing the next field of the cell pointed to by
p is not possible as part of this definition.

To account for the dependency between different separation logic predicates,
Steel relies on combinators. A first very useful combinator is vdep, used to express
a dependency between the memory content of one predicate and another predicate;
its selector is a dependent pair made of the memory content of both predicates. To
ensure that separation logic predicates provide properly typed memory contents,
they are enriched with a type field specifying the type of the corresponding selector,
that can be retrieved using t_of. Such separation logic predicates are of type vprop.

1 val vdep (v: vprop) (p: (t_of v) -> vprop) : vprop

Using vdep, one can encode linked lists the following way, though it is partly unsat-
isfying, as we shall see.

1 let rec 1list (#a: TypeO) (ptr: t a) (nm: nat)

2 : Tot vprop

s (decreases n)

. =

5 if (n = 0)

¢ then pure (is_null ptr)

7 else vdep (vptr ptr) (fun v -> 1llist v.next (n-1))

The n natural number is here used to prove the termination of 11ist and is actually
equal to the length of the underlying list: the interested reader can find correspond-
ing details in Appendix Yet, this definition of 11ist does not provide us with
a selector, that is, a way to retrieve memory.

To this end, a useful combinator is vrewrite, used to rewrite the memory content
of one predicate, e.g., to get a suitable selector.

1 val vrewrite (v: vprop) (#t: Type) (p: (t_of v) -> GTot t)
> r:vprop{t_of r == t}

As we are implementing linked lists, the expected selector is of type 1ist a. Refining
previous implementation using the vrewrite combinator, we obtain the following.

1 let rec 1list (ptr: t a)
> Tot (sl:vprop{t_of sl == list a})

3 =

+ 1if (n = 0) then (
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pure (is_null ptr) “vrewrite' (fun _ -> [])
) else (

vdep (vptr ptr) (fun v -> 1llist v.next)

“vrewrite'

(fun x -> (dfst x).data :: (dsnd x))

In particular, while the case analysis is on n and not on the associated list, it is
equivalent to the previous textbook definition: the interested reader can find details
in Appendix[A.2] In the basic case, where the pointer is null, we want the associated
selector to be an empty list. In the other case, we know that the memory content x
of the predicate vdep (vptr ptr) (fun v -> 1list v.next) is a dependent pair,
whose first and second element are returned by the dfst and dsnd functions. As
the goal is to retrieve a list of type 1ist a and not list (cell a), only the data
field of the cell associated to ptr corresponds to the intended head of the list.

Let us now build the cons operator on top of this separation logic predicate.
To this end, handling vdep and vrewrite combinators is required; for this purpose,
each combinator comes with both an introduction and an elimination function. The
following code makes use of SteelGhost, the effect corresponding to ghost, compu-
tationally irrelevant Steel computations.

val intro_vdep (v: vprop) (q: vprop) (p: (t_of v) -> vprop)
: SteelGhost unit
(v “star” q) (fun _ -> vdep v p)
(requires fun h -> q == p (h v))
(ensures fun h _ h' -> let x2 = h' (vdep v p) in
q==p (hv) /\
dfst x2 == (h v) /\
dsnd x2 == (h q)
)

val intro_vrewrite (v: vprop) (f: (normal (t_of v) -> GTot t))
: SteelGhost unit

v (fun _ -> vrewrite v f)
(requires fun _ -> True)
(ensures fun h _ h' -> h' (vrewrite v f) == f (h v))

In turn, these can be used to implement cons, whose unsurprising specification
is met by using both intro_vdep and intro_vrewrite[l| In the following code,
sel is the selector associated with vptr predicates describing references; v_11list is
the selector associated with the previously defined linked list predicate.

"Few details have been omitted and are included in Appendix
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1 let cons (#a: TypeO) (hd: t a) (tl: t a)
2 : Steel unit

3 (vptr hd “star” 1llist t)

4+ (fun _ -> 1llist hd)

5 (requires fun hO -> True)

¢ (ensures fun hO r hl ->

7 let v : cell a = sel hd hO in

8 let 10 : list a = v_1llist tl1l hO in
9 let 11 : list a = v_1llist hd hl in
10 11 == v.data :: 10

11 )

12 =

13 let ¢ = read hd in

14 write hd {data = c.data; next = tl};

15 (**) intro_vdep

16 (vptr hd)

17 (11ist t1)

18 (fun v -> 1list v.next);

19 (*¥*) intro_vrewrite

20 (vdep (vptr hd) (fun v -> 1list v.next))
21 (fun x -> (dfst x).data :: (dsnd x));

In addition to that, there exists yet another builtin combinator called vrefine,
that can be used to refine the memory content using pure predicate.

1 val vrefine (v: vprop) (p: (t_of v) -> prop)
2 @ r:vprop{t_of r == x:t_of v{p x}}

Finally, Steel supports user-defined combinators, which can be useful, as we will see
in Chapter 3

2.2.3.3 Concurrency support

Steel is a Concurrent Separation Logic: as such, it allows one to write and prove
correct shared-memory low-level concurrent programs. Parallel computations can be
implemented using the par combinator, composing two different threads executing
code operating on disjoint regions of memory in parallel, following the PAR rule
presented in Section [2.2.1] However, using only par would not be very interesting
as it does not provide fine-grained memory sharing.

Building upon SteelCore, Steel inherits its expressive memory model based on
typed, higher-order references. Each allocation is associated with a user-defined
PCM (partially commutative monoid): we refer to the SteelCore paper for more
details [138|. In practice, fractional permissions are commonly used: the basic ideas
is to extend resource assertions such as points-to assertions with a number p € (0, 1].
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Partial ownership (p < 1) only gives read access to the corresponding resource; full
ownership (p = 1) gives read and write access to it. Equipped with this, resources
can be shared between two different threads, such as references expressed using
points-to assertions. Let us have a look at a subset of corresponding APIs provided
by the Steel.Reference library [139].

val readp (#a:TypeO) (r:ref a) (p: perm) : Steel a
(vptrp r p) (fun _ -> vptrp r p)
(requires fun _ -> True)
(ensures fun hO x hl ->
hO (vptrp r p) == hl (vptrp r p) /\
x == hl (vptrp r p))

The readp function allows one to read a reference for which it only has partial
ownership, refining the previously presented API. Line 5 is noteworthy, as one may
wonder why it is required to specify that the memory content of the considered
reference is left unchanged. This line is necessary due to the fact that, while the
content of total definitions is in general freely accessible and may be freely unrolled,
e.g., by the SMT solver, definitions whose effect is Steel are “opaque” to the rest of
the code. More precisely, it is not possible to do extrinsic proofs of Steel compu-
tations. The signature must thus specify all properties required by other functions.
As a final comment regarding readp, it is noteworthy that frame equalities (such as
the one used line 5) are stronger than selector equalities. Indeed, a selector does not
necessarily describe the entire memory content corresponding to a selector predicate.

let vptr r = vptrp r full_perm
val write (#a:TypeO) (r:ref a) (x:a) : Steel unit

(vptr r) (fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun _ _ hl -> x == sel r hl)

val share (#a:TypeO) (#p: perm) (r:ref a)
: SteelGhost unit
(vptrp r p)
(fun _ -> vptrp r (half_perm p) “star  vptrp r (half_perm p))
(requires fun _ -> True)
(ensures fun h _ h' -> h' (vptrp r (half_perm p)) == h (vptrp r p))

The write function is the one previously used to implement the textbook swap func-
tion: in particular, it outlines that by default, references are used in full-ownership
settings. Finally, the share function is as expected, in addition to its counterpart
gather here omitted for brevity: they both allow one to modify permissions.

In many cases, however, several threads may require read and write access to a
same memory location. This requires additional synchronization mechanisms, e.g.,
locks. Steel supports locks through their encoding as dynamically allocated invari-
ants. Skimming over details of the encoding, the API to use locks is the following
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one, provided by the Steel.SpinLock library [140]. SteelT is an abbreviation for
Steel functions with trivial precondition and postconditions.

val new_lock (p:vprop)
: SteelT (lock p) p (fun _ -> emp)

val acquire_lock (#p:vprop) (1:lock p)
: SteelT unit emp (fun _ -> p)

val release_lock (#p:vprop) (1l:lock p)
: SteelT unit p (fun _ -> emp)

Let us briefly describe these functions. First, creating a lock associated to a sepa-
ration logic predicate p requires to have this predicate p in the context. As a result
of the creation of the associated lock, p is no longer in the context at the end of the
execution of the function. Once created and returned, the lock controls the access
to the objects described by p. Second, acquiring a lock 1 associated to a predicate
p comes with a trivial precondition, as this process amounts to waiting until the
lock becomes available. This can be naively implemented as a loop until the lock
becomes available; the function then terminates and p is added in the context[F] Fi-
nally, releasing a lock 1 associated to a predicate p requires to have p in the context.
Releasing the lock amounts to giving back the ownership of p to the lock and thus
removing p from the context.

Unfortunately, the use of mutexes is not always suitable to implementation con-
straints. Indeed, using locks induces a performance overhead in case of lock con-
tention, when a large number of threads try acquiring the same lock. Additionally,
using locks improperly may incur deadlocks at run-time, where no further progress
can be made by executing program due to impossible lock acquisition. In some cases,
it may thus be preferable to use lock-free algorithms, that do not require mutexes.

Implementing lock-free algorithms is done most of the time by relying on hard-
ware support to implement lock-free data structures using atomic operations (such
as compare-and-swap). Between the Steel and SteelGhost effects, there is one
additional subeffect layer called SteelAtomic that can be used to model atomic
operations, such as the aforementioned compare-and-swap (CAS).

val cas_u32 (r: ref uint32_t) (v_old v_new: uint32_t)
: SteelAtomic bool
(vptr r) (fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun hO b hl ->

let vO = sel r hO in
let vl = sel r hl in
if b then vl = v_new /\ vO = v_old else vl = v0

)

18This strategy results in a specific sort of lock called a spinlock, relying on busy waiting. Most
of the time, mutexes should be preferred |50, sections 17.8.8 and 17.8.9].
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Finally, in some other cases, it can also be useful to directly reason using dynamically
allocated invariants to ensure a form of logical synchronization: this can be useful
to initialize data structures, as we will see in Section [3.4.2]

2.2.4 Extraction of Steel programs to C code using KaRaMeL

Support for extracting a subset of F* to C originated with the Low* language ,
that has notably been used to implement a formally verified cryptographic library
called HACL* [142], among other verification projects. Extraction of Low* code is
done through a dedicated compiler called KaRaMeL [143], that aims at producing
readable C. Since then, KaRaMeL has been adapted to also support the extraction
of Steel programs.

Let us reuse the swap function as an example.

1 module CH2.S24.Swap 1 #include "CHZ2_S24_Swap.h"

2 2

s module U64 = FStar.UInt64 3

4 open Steel.Reference 4

5 open Steel.Effect 5

¢ open Steel.Effect.Atomic 6

7 7

s let swap (rl r2: ref U64.t) s void CH2_S24_Swap_swap(uint64_t *ri,
9 Steel unit 9 uint64_t *r2)
1 (vptr rl » vptr r2) w0 {

1 (fun _ -> vptr rl » vptr r2) o uint64_t vl = *rl;

12 (requires fun h0 -> True) 12 uint64_t v2 = *r2;

13 (ensures fun hO _ hl -> 13 *rl = v2;

14 sel rl hl == sel r2 h0 /\ 1 *r2 = vi;

15 sel r2 hl == sel rl hO 15}

16 )

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

(* *) slassert (vptr ril);

(* *) slassert (vptr r2);

// get current heap's state
(¥#) let hO = get () in

let vl = read rl in

let v2 = read r2 in

(¥ *) assert (sel rl hO == v1);
(¥ *) assert (sel r2 h0 == v2);
write rl1 v2;

write r2 vi;

// get current heap's state
(¥*) let hl = get () in

(**) assert (sel r2 hl == v1);
(¥ *) assert (sel rl hl == v2)
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In the left-hand column, the entire F* code corresponding to a monomorphized Steel
implementation of the swap function on 64-bit integers is shown. Assertions related
to the shape of the heap (in the form of slasserts) and to the content of the heap
(in the form of asserts), that can be used as part of proof debugging, have been
deliberately retained in the presented code. Corresponding lines have been prefixed
with (* *) | as these are erased and not extracted to C. In the right-hand column,
corresponding C code after extraction by KaRaMeL is shown.

In the rest of this section, we briefly present additional KaRaMel. extensions
that were required to aim at the verification of a realistic memory allocator.

2.2.4.1 Implementation-defined size_t and ptrdiff_t integer types

As previously presented in Section 2.1.1.1] size_t is an unsigned integer type
that can store the maximum size of any object, used in the setting of memory man-
agement to store sizes and alignments of objects. Its bit width is implementation-
defined, mandated since C99 to be at least 16.

In some cases, pointer subtraction can be very useful, as we will see in Section [3.1]
This special case of pointer arithmetic is only defined for pointers belonging to the
same underlying array. The corresponding result must be stored using a dedicated
C signed integer type called ptrdiff_t. Its bit width is implementation-defined,
mandated since C23 to be at least 16.

16-bits integers are not enough to store the size of objects commonly allocated
by client programs. The use of values beyond this default bit width is thus precisely
axiomatized and guarded in C code using static assertions. The role of these static
assertions is to verify at compilation-time that implementation-defined limits of
size_t and ptrdiff_t are suitable. Functions introducing these static assertions
are included in the Steel.Array library [144] and correspond to special cases of
KaRaMeL extraction.

2.2.4.2 Arrays

Arrays are represented using pointers associating consecutive cells with a single
fractional permission. The corresponding memory content is of type seq a, that is,
sequences of type a.

val varrayp (arr: array a) (p: perm)
: r:vprop{t_of vprop == seq a}

Offsets used to access arrays are of type size_t; concurrent reads in case of partial
ownership are supported. In addition to permission-based sharing, spatial sharing
is supported: arrays can be split in two spatially disjoint parts. In turn, this re-
quires pointer arithmetic support; more specific pointer arithmetic making use of
the ptrdiff_t type is also supported.
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A last feature related to arrays that was added to the Steel framework and
toolchain is top-level immutable arrays; these are a common C feature that was
until then missing from Steel. Support for those was added, and they compile
with the expected const qualifier. Corresponding APIs are implemented as pure
functions: this design makes those top-level arrays easy and convenient to use. By
virtue of being immutable, one can retrieve the corresponding values, and show
that they remain unaffected by (necessarily) disjoint updates, without any tedious
memory reasoning. This mechanism relies on a custom vprop, which is duplicable
and supports concurrent accesses.

2.2.4.3 Locks

The POSIX thread (also called pthread) API for locks is the following, as part
of the commonly-used <pthread.h> header.

int pthread_mutex_init(pthread_mutex_t* mutex, [...]);
int pthread_mutex_lock(pthread_mutex_t* mutex);
int pthread_mutex_unlock(pthread_mutex_t* mutex);

This results in a mismatch between the axiomatization of locks, where mutexes
are value, and the corresponding C code, operating on corresponding memory ad-
dresses. In the pthread library, the type of locks is pthread_mutex_t. Unfortu-
nately, locks are not identified with a unique identifier that would be contained
within that value, but rather, by the address of the value itself. This means that
a simple let y = x in F* yields, once extracted to C, a statement of the form
pthread_mutex_t y = x; which effectively generates a new lock with a different
identity from x. Worse, the model of locks in Steel generates prototypes in C, such
as the following one.

void acquire_lock(pthread_mutex_t p);

which then requires an implementation. Here, this simply cannot be done, as calling
pthread_mutex_lock(&p) would operate on a copy of the original lock passed by
value via the function call. Fixing the Steel model is not possible; it would require
materializing the lock itself as an vprop, preventing us from passing the lock around.

Fixing this issue relies on an existing nanopass in the Steel-to-C KaRaMeL com-
piler, namely the struct-by-address pass, initially implemented to target the Com-
pCert compiler, and covered by the original soundness result [141, Appendix E.6|.
This pass ensures that function arguments of struct types are always passed by
reference and never by copy, which in turn avoids relying on an unverified compi-
lation pass in the CompCert frontend. This pass was extended to also operate on
lock values, meaning the signature of acquire_lock in Steel now produces a C pro-
totype of the form void acquire_lock(pthread_mutex_t *p);, which avoids the
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earlier issue. A translation validator was then added that errors out if any subex-
pression ever materializes at type pthread_mutex_t. This means that once a lock
is declared, it may only be passed around by address, and never by value. This
reduces the soundness of the lock compilation scheme to that of the (trivial) val-
idator. The validator then identified situations that did lead to locks being copied.
Those essentially stemmed from F* lifting effectful subexpressions into their own
let-bindings, because of its monadic effects. Those were eliminated via a series of
one-liner cosmetic optimizations. For instance, in KaRaMeL’s AST, expressions such
as let tmp; new_lock(&tmp); *p = { *p with lock = tmp } are now rewritten
into new_lock(&p->lock).



Chapter 3

StarMalloc: Verifying a Modern,
Hardened Memory Allocator

I fought to bring the software legitimacy so that it — and those building iﬂ»
would be given its due respect and thus I began to use the term ‘software en-
gineering’ to distinguish it from hardware and other kinds of engineering, yet
treat each type of engineering as part of the overall systems engineering process.
When I first started using this phrase, it was considered to be quite amusing.
It was an ongoing joke for a long time. They liked to kid me about my radical
ideas. Software eventually and necessarily gained the same respect as any other
discipline.

Margaret Hamilton

This chapter is adapted from the eponymous article published at OOPSLA’24 [1].

In this chapter, we present StarMalloc, a verified, efficient, security-oriented and
concurrent memory allocator. This verification work was entirely performed in F*
using the Steel separation logic framework. In Section [3.I we first present Star-
Malloc’s architecture, whose design is inherited from the hardened-malloc memory
allocator and thus is not part of our contributions. Then, we proceed with presenting
our main contribution: a verification methodology that, beyond challenges inherent
to the outlined architecture, allows easily updating and extending the allocator im-
plementation while limiting the overhead of adapting corresponding proofs. In Sec-
tion [3.2] we outline the verification of a bare memory allocator through modular
abstractions and generic predicates. In Section [3.3] we demonstrate that our veri-
fication methodology is well-suited for iterative verification, targeting performance
and hardening improvements over the bare allocator. In Section [3.4] we show that,
through genericity and partial evaluation, we obtain a configurable memory alloca-
tor. In Section [3.5] we present our functional correctness theorems as well as the
axiomatizations used, that are part of the trusting computing base (TCB).

"Mostly women at the time, as hardware was considered more prestigious.

99
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3.1 Background: StarMalloc’s architecture

In this section, we present StarMallos’s design top-down through its hierarchical
levels and describe the sequence of steps taken in order to fulfill memory allocation
and deallocation requests.

StarMalloc’s design is entirely inherited from that of hardened-malloc [100], that
is, a modern security-oriented allocator providing the standard malloc API as well
as some additional extensions, such as Android-specific primitives and support for
memory tagging. This allocator, itself originally inspired by the OpenBSD mallod?]
has been developed to be used within a security-oriented Android distribution called
GrapheneOS [146]. Our choice of hardened malloc as a baseline stems from several
reasons: its advanced design and hardening features raise verification challenges rep-
resentative of modern allocators, and its emphasis on security makes formally ruling
out implementation bugs even more attractive than for other allocators. The design
choices especially aim for low fragmentation, low contention, security by default,
and good long-term performance and scalability. While the high-level architectures
are identical, some differences however exist between these two allocators and are
discussed in Section as part of the evaluation.

StarMalloc is actually composed of two allocators, retaining hardened malloc’s
design: one allocator handling regular allocations and one allocator handling large
allocations. The threshold used to distinguish between regular allocations and large
allocations is the size of a system page, hardcoded to 4KiB in StarMalloc’s im-
plementation. As a consequence, any allocation strictly larger than 4KiB will be
handled by the “large” allocator.

In the following, we will successively describe: the architecture of the large allo-
cator in Section [3.1.1] the architecture of the allocator handling regular allocations
in Section [3.1.2] as well as security mechanisms integrated as part of these two
allocators in Section B.1.3l

3.1.1 Large allocations: a system call wrapper

We first describe the allocator handling large allocations, as it is simpler than
StarMalloc’s other allocator. For this reason, it actually is the one we first tackled.

This allocator amounts to a system call wrapper. Indeed, allocation and deallo-
cation requests are directly forwarded to the underlying operating systemf’| through
the mmap and munmap system calls, that can be roughly described as the system
calls equivalent for malloc and free [89, p.1437 and p.1490|. These system calls,
especially mmap, can be used in various ways and have in the general case com-
plex specifications. We rely instead on specialized versions of mmap and munmap,
see Section [3.5.3] that have the following C signatures and specifications, handling
uint8_t* pointers instead of void* ones.

e uint8_t* mmap_u8(size_t length): allocate a memory mapping (contigu-

20tto Moerbeek’s malloc released in 2008, replacing phkmalloc since OpenBSD 4.4 [145].
3 Assumed to be a Unix-like OS.
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ous pages) whose length in bytes is at least the specified length and return
the corresponding pointer; due to arguments provided to mmap, zero-initialized
pages are provided.

e void munmap_u8(uint8_t* addr, size_t length): deallocate all mappings

(pages) of the specified address range: [addr,addr + length).

3.1.1.1 Large allocator: allocation and deallocation

Allocation process. Let us describe the allocation process, e.g, initiated by a
malloc call.

. The client program requests size bytes through the C standard library malloc

function, that points to the StarMalloc’s malloc implementation in our setting.

. As size > 4096, this allocation request is deemed to be a large allocation

request and is forwarded to the “large” allocator.

. The large allocator requests the operating system for memory to fulfill this

allocation request. This is done through the mmap system call that returns
a pointer ptr to the just-created memory mapping. If ptr is a null pointer,
allocation stops and a null pointer is returned.

. The large allocator stores the pair (ptr, size) inside an associative data struc-

ture storing all of the allocator’s metadata.

. The value ptr is returned to the user.

Deallocation process. Similarly, let us describe the deallocation process, e.g.,
initiated by free.

1.

The client program requests some a pointer ptr to be deallocated through
the C standard library free function, that points to the StarMalloc’s free
implementation in our setting.

Given ptr, StarMalloc can check whether this allocation corresponds to a
possibly regular allocation or notf} if not, deallocation request is forwarded to
the large allocator.

. The large allocator checks whether ptr corresponds to a valid large allocation,

that is, whether ptr corresponds to a large allocation that has not been yet
deallocated. This is done by checking whether ptr is one of the keys stored in
the associative data structure storing metadata.

e If is this is not the case, the deallocation process stops.

e Otherwise, it continues and the size of the corresponding valid allocation
size is retrieved.

4As we will see, all regular allocations live in one large memory segment.
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4. The large allocator requests the operating system through the munmap system
call to remove the [ptr,ptr + size) address range corresponding to the once-
allocated memory mapping.

5. Once this is done, the pair (ptr,size) is removed from the metadata.

Behavior of the allocator when the deallocation process stops is by default to emit
a failure. Described cases correspond to memory safety issues such as invalid or
double frees: in a security-oriented setting, this justifies terminating the execution
of the program.

Metadata usage. Consistent metadata about valid allocations is necessary to ac-
tually perform deallocation. As we shall see in Section [3.5.3] semantics of system
calls and their modeling can sometimes be quite subtle. In the deallocation case,
using an incorrect length as part of the munmap call could lead to correctness issues:
would it be too small, only some of the pages backing the considered allocation’s
would be unmapped; would it be too large, possibly unrelated pages could be un-
mapped. This is the reason for the deallocation step retrieving the size associated
with a pointer (already checked as valid).

In addition to that, as outlined in Section [2.1.2.2] keeping valid allocations meta-
data consistent is mandatory to implement realloc correctly. This further justifies
why the storing of metadata is required.

As a final point regarding metadata’s practical use, it should be noted that in
this setting, we rely on the OS to reuse available space. As a consequence of this,
not keeping metadata about the memory layout about free space, e.g., previously
allocated memory blocks that have since been freed, does not hinder efficient memory
reuse.

Thread safety. Provided APIs are made thread-safe through the use of a dedi-
cated mutex guarding the use of the large allocator, without any further effort to
reduce contention, in line with hardened malloc’s implementation. This may be
surprising at first glance but is actually justified by the use of the Linux kernel to
implement serialized changes to memory mappings used by user processes using a
global lock (the “mmap_lock”). It is however noteworthy that there are some efforts
to replace this lock by more efficient data structures, calling in turn for possible
future improvements [147].

Metadata data structure. In the above, it should be noted that we left the
associative data structure unspecified: any such data structure would be suitable.
In practice, StarMalloc’s implementation relies on a map implemented using an AVL
tree. While hardened malloc stores metadata using a hash table, using an AVL tree
does not require reasoning on hash collisions. One reason arguing for the use of an
AVL tree without worrying about associated costs is that system calls are overall
very costly, likely surpassing by far any corresponding overhead.
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Overall, this allocator could be described as a “toy allocator” when used as a
standalone allocator, as it design is very quite simple and its performance quite
poor. Indeed, on one hand, regarding time performance, it requires one system call
per allocation and one system call per deallocation: this is quite costly, as previously
mentioned. On the other hand, regarding memory performance, using it to provide
small allocations would lead to important internal memory fragmentation. Indeed,
each allocation is provided through one dedicated memory mapping, whose size is
at least that of one page.

3.1.1.2 Large allocator: initialization

The initialization of the large allocator is quite straightforward, as only the
associated lock and the AVL tree require to be initialized. However, as we will see,
the large allocator relies on the slab allocator implementation for efficient allocations
of the AVL tree’s nodes, thus avoiding slow per-allocation syscalls. In turn, it
requires the large allocator to initialize the dedicated sizeclass allocator, whose size
is suitable for memory size of the AVL tree node[]

3.1.2 Regular allocations: a slab allocator

While we first described the allocator handling large allocations, most allocations
are rather small and thus are the main target of verification efforts. As such, among
the numerous set of possible constraints partially described in Section they
should be fast.

The allocator that we describe is a slab allocator that operates on a single, very
large memory mapping of fixed sized that is allocated at initialization and used for
all regular allocations. Its implementation relies on the large address space that
virtual memory brings on modern hardware. As such, it would only make sense to
use StarMalloc in suitable Unix-like modern environments.

3.1.2.1 Slab allocator’s architecture

Slab allocator as a collection of suballocators. A slab allocator is a memory
allocator that only provides a fixed set of allocations sizes by partitioning the de-
scribed large memory mapping into size classes, presented in Section 2.1.1 In turn,
the set of allocator-provided allocations sizes is the set of all allocator’s size classes.
As the original slab paper puts it [148|, a “slab allocator is not a monolithic entity,
but rather is a loose confederation of independent caches”. Their setting is that of
kernel memory allocation, where performance was and remains of utmost interest in
many cases [149]. StarMalloc follows the design of hardened malloc’s slab alloca-
tor: in its setting and that of hardened malloc, where the usual trade-off between
security and performance leans rather towards security, cache is not a desirable fea-
ture and is thus not provided. The generic principle that the resulting allocator can
be considered as a collection of independent suballocators is nonetheless retained.

5This is axiomatized and checked at compilation-time using C static assertions.
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Supported size classes and memory performance. Let us use an example a
slab allocator that only has 3 size classes: 64, 256 and 1024: it could only serve allo-
cations up to 1024 bytes and would likely face large internal fragmentation. Indeed,
512-bytes allocations would in this case be provided by the 1024-bytes allocator. In
order to avoid such issues, larger and thus finer-grained size classes sets are com-
monly used, so that resulting memory allocators have generally good performance.
As we will see in Section [3.4] StarMalloc comes with a configurable set of size classes.

Now, let us proceed with a hierachical presentation of the slab allocator’s archi-
tecture.

Arenas. The large memory region for regular allocations is first subdivided into
arenas. As described in Section 2.1.3] the goal is to spread concurrent allocations
from multiple threads onto distinct arenas, to avoid contention. The number of
arenas is set at compile time; using thread-local storage, we associate an arena
to each thread (e.g., thread_id 7 n_arenas, where n_arenas is the number of
arenas). When a thread requests memory, the allocator looks up its associated
arena then allocates there. Threads can however access and free memory located in
a different arena, the main point of arenas is to spread out allocations in order to
statically reduce contention. Arenas are not protected by locks, which operate at a
smaller level of granularity.

Size classes. FEach arena is further subdivided into size classes; a given suballoca-
tor operates on a single submapping of the initial very large memory mapping, and
only handles allocations and deallocations related to this submapping.

Thanks to virtual memory, only the portions of each size class that are in use
(or that were in use and then freed) are backed by physical memory. Each size
class is associated to metadata that needs to be updated whenever an allocation
takes place within that size class: for that reason, size classes are each protected
by an individual lock. Recall that the mapping of threads to arenas is not injective
(the number of arenas is fixed): the lock thus prevents two threads from racing to
allocate within the same size class.

Slabs. In order to manage this memory mapping, the size class allocator further
divides it into slabs. In the general setting, a slab designates “one or more pages
of virtually contiguous memory” [148]|: their size is fixed inside a size class and can
depend on the considered size class. In StarMalloc’s setting, a slab always is exactly
equal to one system pagelf| Each size class allocator tracks all of its slabs using size
class metadata. To this end, each size class allocator maintains a number md_count
such that only the first md_count slabs have been made available for allocation,
leaving any further slab untouched. For each slab made available for allocation, the
size class metadata keeps track of the status of the slab, depending on whether it
can be used for allocation or not. A slab is said to be full if it no longer has any free

6In practice, an extension of StarMalloc provides extended size classes, with allocations spanning
several pages. We omit this in the rest of this document.
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space for allocation; it is said to be empty if all its space is available for allocation;
otherwise, it is said to be partial. Distinguishing between empty and partial slabs
aims at reducing memory fragmentation: partial slabs are prioritized for allocation.
In addition to this, other slabs statuses related to security mechanisms are used,
see Section The tracking of all three kinds of slabs is achieved using a dedi-
cated, complex data structure based on doubly-linked lists to efficiently insert and
remove elements when implementing malloc and free, described in Section [3.3]

Slots. Slabs are further divided into slots, that is, chunks of memory whose size
always is equal to that of the underlying size class. One slot corresponds to one
allocation unit, that is, one chunk of memory that ought to be allocated. The
previously mentioned status associated with each slab thus depends on the number
of slots available in the considered slab for allocation. To keep track of whether a
slot is available or not, each slab is equipped with slab metadata keeping track of
the status of each slot.

To give a concrete example of size classes, within the 4KiB size class, each slab
contains exactly one slot; within the 16B size class (the smallest supported one),
each slab contains 256 slots.

Metadata implementation. At this point, metadata has not yet been precisely
described. StarMalloc actually follows hardened malloc’s quite opiniated choice of
using segregated metadata instead of metadata intertwined with allocations; doing
so is considered both as one important design choice [150] and security feature |151].
Using segregated metadata implies that all of the metadata is stored in a region that
is entirely disjoint from the allocation region, which corresponds to the aforemen-
tioned very large mapping for all regular allocations. This is applicable to both size
class metadata (about slabs) and slab metadata (about slots).

Let us refine the presented architecture to account for metadata. In practice,
there actually are three large mappings requested from the operating system at
initialization: one for the allocation region, one for size class metadata one for slab
metadata. These three mapping are divided between all independent size classes
allocators. We focus again on the architecture of a single suballocator, whose size
class is sc and number of slots per slab is nb_slots sc = 4096/sc. Figure
provides a high-level presentation of the architecture of StarMalloc, including its
metadata.

Let us note by slabs, sizeclass_md and slabs_md respectively the three suballocator-
specific submappings of these of the global mappings. For any suitable &, the cor-
respondence between these is as follows.

e The type of sizeclass_md is array status, where status is an enumerated
type whose set of values is the set of all slab statuses. sizeclass_md[k] is
the status of the k-th slab, whose address range in bytes is [slabs + 4096 *
k,slabs +4096 * (k+1)).
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Figure 3.1: Architecture of StarMalloc. All regular allocations live in a single mmap’d
memory region (left). All metadata lives in a single distinct mmap’d memory region
(right). All allocations are contiguous. All metadata is contiguous. Accessing the
n-th slab of the m-th size class thus boils down to pointer arithmetic, and similarly
for the metadata. We rely on reserved, but uncommitted virtual memory to ensure
only in-use pages occupy memory. Only a single arena is shown for conciseness;
other arenas and their metadata are laid out contiguously in the same two mmap’d
regions.

e slabs_md[k] is the metadata of all slots that are part of the k-th slab. This
metadata is a map from slot ids to boolean that is implemented as a 256-bit
bitmap, represented by four 64-bit integers and thus slabs_md is an array of
integers of type array uint64_t. The slab metadata corresponding to the
k-th slab is thus stored in the range [slabs_md +4 * k,slabs_md+4 * (k+1)).

One noteworthy difference with the large allocator is that for each allocation,
its size is not explicitly stored but rather encoded as part of the memory layout
invariants: one can retrieve the size of an allocation using its address.

3.1.2.2 Slab allocator: allocation and deallocation
Allocation process.

1. The client thread requests size bytes through the C standard library malloc
function, that points to the StarMalloc’s malloc implementation in our setting.

2. As size < 4096, this allocation request is deemed to be a regular allocation
request and is forwarded to the slab allocator.

3. Relying on thread-local storage, the allocator selects the arena associated with
the thread requesting memory.

4. Given the size of the requested allocation, the statically defined set of size
classes and the statically defined size class selection function, the request is
forwarded to the corresponding size class allocator: the request is rounded up
to the nearest available size class.

5. Corresponding suballocator’s mutex is locked.
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6. At this point, a non-full slab must be selected to proceed: the size class alloca-
tor relies on the following strategy. If there is any partial slab left in the partial
slabs list, it selects the head of this list; otherwise, if there is any empty slab
left in the empty slabs list, it selects the head of this list; otherwise, it incre-
ments the counter of used slabs md_count, and selects the first so far-unused
slab. If no such slab exists, allocation stops, sizeclass mutex is unlocked and
a null pointer is returned.

7. By construction, the selected slab has at least one slot that is free. One free
slot is selected; slab metadata is updated; size class metadata also is updated;
sizeclass mutex is unlocked; a pointer to the corresponding chunk of memory
is returned.

Deallocation process.

1. The client program requests some memory allocation ptr to be deallocated
through the C standard library free function, that points to the StarMalloc’s
free implementation in our setting.

2. Given its address ptr, StarMalloc checks whether this allocation is part of the
very large mapping corresponding to the regular allocations region. If so, the
deallocation request is forwarded to the slab allocator along with the pointer
difference diff between ptr and the start of the regular allocations region/]

3. Given diff and that all size classes have the same share of the regular alloca-
tions region sc_size, computing diff/sc_size allows the allocator to retrieve
the size class that ptr should correspond to. The deallocation request is for-
warded to this size class allocator, along with diff_sc = diff mod sc_sizef]|

4. Corresponding suballocator’s mutex is locked.

5. Given diff_sc, computing pos_slab = diff_sc/4096 allows the allocator
to retrieve the slab that ptr should be part of. At this point, some checks
are possible, such as the following ones. If pos_slab > md_count, that is,
if ptr should be part of a slab that has not yet been used by the allocator,
something clearly is wrong. Additionally, if md_region[pos_slab] is equal to
an unsuitable slab status (e.g., due to security mechanisms, or the empty slab
status), it is also clear that something is wrong.

e In both described cases, sizeclass mutex is unlocked and the deallocation
process stops.

"This is not corresponding to a UB once it has been checked that ptr is indeed part of the very
large memory allocation unit that is the regular allocations region; the ptrdiff_t C integer type
is used appropriately here.

8diff_sc is equal to the pointer difference between the ptr and the start of the size class share
of the regular allocations region.
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e Otherwise, the value diff_slab = diff_sc mod 4096 is computed and
the process continues along with this value. []

6. Given diff_slab, computing diff_slot = diff_slab mod sc is necessary.
Indeed, if diff_slot > 0, then ptr is misaligned with respect to valid alloca-
tions and thus cannot correspond to a valid allocation.

e In that case, sizeclass mutex is unlocked and the deallocation process
stops.

e Otherwise, the value pos_slot = diff_slab/sc is computed and the
process continues along with this value.

7. Given pos_slot, the allocator can determine to which slot ptr should corre-
spond. At this point md_bm_region|[pos_slab][pos_slot] is retrieved.

e [f the metadata corresponding to the alleged slot indicates that this slot
is free, sizeclass mutex is unlocked and the deallocation process stops.

e Otherwise, ptr indeed corresponds to a valid allocation and the process
continues.

Deallocation follows; slab metadata is updated; sizeclass metadata (including
lists) is updated; sizeclass mutex is unlocked.

As previously mentioned, the default behavior of the allocator when the deallocation
process stops is to terminate the execution of the program.

3.1.2.3 Slab allocator’s initialization

As size class suballocators all are independent from each other, initializing the
slab allocator can be done by initializing all of them sequentially. Initializing a
suballocator is done the following way: memory obtained from the three large initial
memory mappings is guaranteed to be zero-initialized (see Section [3.1.1]), so that
most well-formedness invariants for considered data structures hold for free. md_-
count is set to zero and doubly-linked lists storing sizeclass metadata initially are
empty.

Finally, StarMalloc provides an additional feature over hardened malloc as it
offers configurable sizeclasses. This feature and its consequences on initialization
implementation are further discussed in section Section [3.4]

3.1.3 Security mechanisms

In addition to the presented architecture, our design incorporates extra security
mechanisms in order to defend against heap corruption vulnerabilities. This high-
lights the need for verification: the design above is non-trivial with many subtle
invariants, and becomes even more so once the security mechanisms are added.

9diff_slab is equal to the pointer difference between the ptr and the start of the slab that
ptr should be part of.
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In Section [2.1.4], we briefly presented a variety of security mechanisms that can be
used to mitigate some classes of memory safety issues. In this section, we present how
security mechanisms blend with the bare allocator architecture we just described.

Segregated metadata. This security feature is intrinsically part of the architec-
ture that was just presented: all metadata is placed in (mmap’d) memory regions that
are entirely disjoint from the memory regions used for allocation. Buffer overflows
affecting the allocation region should result in limited damage since the allocator’s
internal data structures would remain untouched.

Zeroing. Also implemented by Apple’s OSX allocator [152|, StarMalloc imple-
ments zeroing-on-free and checks that memory blocks to be allocated are still zero-
initialized at allocation.

In the large allocator case, memory reuse is handled by the OS. Allocated memory
through the use of the mmap system call is guaranteed to be initialized with zeroes.
Memory is deallocated through the use of munmap and thus becomes immediately
inaccessible; it corresponds to physical pages that will be zeroed as part of the OS
memory management, so that future allocations may be provided zero-initialized.

Regarding the slab allocator, zeroing can be implemented transparently regard-
ing its architecture, without relying on architecture-specific details.

All of the following security mechanisms are implemented as part of the slab
allocator.

Guard pages. Guard pages are inserted each time md_count is incremented and
the size class allocator is provided with more pages and thus available memory. Pages
that can be used as allocations and guard pages are intertwined in a deterministic
way, using a configurable pattern. One guard page is basically inserted every n
pages. Guard pages have a dedicated additional status as part of the sizeclass
allocator bookkeeping regarding slabs.

Heap canaries. Heap canaries are implemented transparently without affecting
the rest of the slab allocator’s architecture: all is required is to adjust the requested
size and increasing it to account for the amount of memory required by canaries.
Canaries are set at allocation and checked at deallocation: if values do not match,
a buffer overflow has occurred and deallocation stops.

Quarantine. Quarantine is implemented at the hierarchical level of slabs han-
dling, as it is quite coarse: no precise bookkeeping of slots use is done to implement
it. Instead, when a slab whose status was full (in the case of the 4096-bytes size
class) or partial becomes empty, it is put in quarantine. Quarantined pages have
a dedicated additional status as part of the sizeclass allocator bookkeeping regard-
ing slabs: they form one additional doubly-linked list that is actually exposed as a
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queue. Slabs are selected from the quarantined only when no partial or empty slab
is available, refining the allocation strategy outlined in previous section.

3.2 Developing a bare size class allocator: hierar-
chical verification

The architecture presented in the previous section divides functionality in sev-
eral hierarchical levels. Beyond architecture details and as part of our verification
methodology, our verified implementation leverages this, relying on F* support for
interfaces that allows one to abstract away details from other components when
verifying one specific file.

Let us recall that there are various hierarchical levels: 1) slots, chunks of memory
part of 2) slabs, larger chunks of memory belonging to the allocation region of 3) size
classes. Considering that a slab allocator can be approximated to a set of size
classes, that is, a set of independent suballocators, we do not focus here on further
hierarchical levels: 4) arenas, 5) the slab allocator as a whole and of course 6) the
entire StarMalloc allocator.

In this section, we focus on the slab allocator and showcase our verification
methodology by demonstrating how we can build separation logic predicates relat-
ing various data structures at a given hierarchical level as well as predicates relating
different hierarchical levels. This relies heavily on Steel support for user-defined
combinators: we use higher-order, custom combinators developed as part of Star-
Malloc’s libraries. First, we consider in Section the predicate defining a slot
then move onto building the predicate describing a slab made of slots, whose own-
ership depend on slab metadata. We then proceed in Section with reusing the
same approach and generic predicates to construct predicates describing most of a
sizeclass allocator, including sizeclass metadata consistency with respect to slabs it
must keep track of.

3.2.1 Verifying the “ground floor”: building slabs from slots

Starting at the bottom of the hierarchy, we first describe the hierarchical level
corresponding to slots and several associated challenges. On one hand, following one
of the main high-level design principles, slots and their metadata belong to disjoint
memory regions: we thus must ensure that metadata are consistent with the actual
allocator’s internal state. On the other hand, slots is the hierarchical level that
must deal with fine-grained ownership transfers, corresponding to allocation units
provided to the client program at allocation and released by the client program at
deallocation: a slot may be owned by the allocator or by the client program.

3.2.1.1 Modeling slot ownership

In what follows, we consider a size class sc and denote the number of slots per
slab nb_slots sc.
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Slots are chunks of memory of length sc: the ¢-th slot of a given slab corresponds
to the address range in bytes [sc * ¢,sc * (i + 1)), where ¢ < nb_slots sc. The
corresponding array-slicing function has the following signaturd'®}

val slot_array (sc: size_class) (slab: array U8.t) (pos: U32.t)
: Pure array U8.t
(requires U32.v pos < U32.v (nb_slots sc) /\
slab_length sc <= length slab)
(ensures fun r -> length r == U32.v sc)

Recall that an array does not correspond to a separation logic predicate in itself.
This is the role of the following simple wrapper, equipped with a twin lemma, stating
that the corresponding memory content (actually, the selector, see Section is
of appropriate type.

let slot_vprop' (sc: size_class)
(slab: array U8.t{length slab >= slab_length sc})
(pos: U32.t{U32.v pos < U32.v (nb_slots sc)})
. Vp:vprop
= varray (slot_array sc slab pos)

val slot_vprop_lemma' (sc: size_class)
(slab: array U8.t{length slab >= slab_length sc})
(pos: U32.t{U32.v pos < U32.v (nb_slots sc)})
: Lemma(t_of (slot_vprop' sc slab pos) == Seq.lseq U8.t (U32.v sc))

As previously mentioned, a slot may either be in use and thus not part of the
allocator’s ownership or free and thus part of the allocator ownership. This refine-
ment over the slot_vprop’ separation logic predicate is expressed thanks to the
following custom vprop combinator we define. Depending on a supplied boolean
value b, it wraps a vprop vp so that its selector is derived as an option over vp’s
selector: if b is false, then the selector is None, otherwise it is Some v, where v is
vp’s selector value.

let vp_to_opt (#a: Type) (b: bool) (vp: vprop{t_of vp == a})
. vp':vprop{t_of vp' == option a}

if b
then emp “vrewrite® (fun v -> Some v)
else vp “vrewrite® (fun v -> None #a)

108ome details have been omitted.
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let slot_vprop (sc: size_class)
(slab: array U8.t{length slab >= slab_length sc})
(md_as_seq: Seq.lseq bool (U32.v (nb_slots sc)))
(pos: U32.t{U32.v pos < U32.v (nb_slots sc)})
. vp:vprop{t_of vp == option (Seq.lseq U8.t (U32.v sc)))
= vp_to_opt
#(Seq.lseq U8.t (U32.v sc))
(Seq.index md_as_seq pos)
(slot_vprop' sc slab pos)

Once again, this comes with a twin lemma slot_vprop_lemma about selector type,
here expressed as a refinement type over slot_vprop’s result for the sake of brevity.
We will see in next paragraph why this is required.

At this point, expressing ownership about one slot depending on underlying
metadata is possible. Given one slab, tying the sequence of its slots and the meta-
data, itself a sequence of booleans, remains to be done.

3.2.1.2 The generic starseq combinator

This pattern, corresponding to an iterated conjunction, is generic and occurs in
several contexts, such as those described in Section and in Section [3.2.2 We
therefore capture this through a custom helper combinator called starseq that we
define, whose signature is the following one.

val starseq (#a #b: Type)
(f: a -> vprop)
(f_lemma: (x: a) -> Lemma (t_of (f x) == b))
(s: Seq.seq a)
: vprop

The corresponding separation logic predicate is the following, using the notation
s[i] :=Seq.index s i:

x1oneth 571 £ 53] = £ s[0] * £ s[1] * ... » f s[length s - 1],
the associated selector being typed as Seq.lseq b (Seq.length s) through the
use of f_lemma.
Leveraging dependent types and separation logic predicates as first-class values, this
combinator is fully generic and works for sequences of any type a with any separation
logic predicate f.

In practice, when used within StarMalloc’s codebase, as will see, a is equal to a
type of unsigned sized numbers (e.g., 32-bit unsigned integers). s corresponds to an
interval of such numbers: with v denoting the coercion function from a to nat, for
any suitable k, we have in such cases that v(s[k]) = v(s[0]) + k. As this combinator
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is pervasively used in StarMalloc’s codebase, it has been carefully designed: key
design choices are the following.

e Using sequences instead of lists allows for easier manipulation of slices.

e Using a generic sequence allows for use with various machine integers types:
StarMalloc’s implementation relies on it.

e Although this comes with some indirection, this makes splitting a starseq
predicate easier, as there is no need for an offset. Indeed, we prove as a lemma
that the two following terms are equivalent.

1 starseq f f_lemma (sl “Seq.append” s2)}
2 =

3 starseq f f_lemma sl x starseq f f_lemma s2.

All of this reveals quite handful when defining helpers to rewrite separation logic
predicates, such as the following admittedly verbose one, justifying why f_lemmas
related to selector type are carried over.

val starseq_unpack (#opened:_) (#a #b: TypeO)
(f: a -> vprop)
(f_lemma: (x:a) -> Lemma (t_of (f x) == b))
(s: Seq.seq a)
(n: nat{n < Seq.length s})
: SteelGhost unit opened
(starseq #a #b f f_lemma s)
(fun _ ->
f (Seq.index s n) *
starseq #a #b f f_lemma (Seq.slice s O n) =
starseq #a #b f f_lemma (Seq.slice s (n+1) (length s))
)
(requires fun _ -> True)
(ensures fun hO _ hl ->
// f (Seq.index s n)'s selector is of type b
f_lemma (Seq.index s n);
let vO = hO (starseq f f_lemma s) in
let v10 = hl (starseq f f_lemma (Seq.slice s 0 n)) in
let vil = hl (starseq f f_lemma (Seq.slice (n+1) (length s))) in
length v == length s /\
Seq.slice v 0 n == v0 /\
Seq.index v n == v10 /\
Seq.slice v (n+1) (Seq.length s) == vi1l
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In the setting of this unpacking stateful lemma, f_lemma is used to establish proper
typing of the n-th element, which is required to establish equality over selectors.

The starseq definition is left opaque through the use of an interface file for the
corresponding library. This way, the definition of starseq is carefully crafted to be-
have properly with regards to the unifier and normalizer of F*; notably, this recursive
definition does not unfold during type-checking. This means we avoid a profusion
of predicates in the context, which would cause performance and unification issues.
Instead, we provided manipulation of this combinator through specialized lemmas
such as the one we just presented.

Iterated conjunctions are not specific to Steel: other tools such as Viper [153] or
CN [154] also support them in conjunction with SMT verification. Our approach
differs however in two key ways. First, the starseq predicate is not natively encoded
in Steel, rather, it is defined as a verified library on top of the Steel program logic,
therefore ensuring that it is not a trusted component of the framework. Second, the
predicates it iterates over are arbitrary separation logic predicates, which are more
expressive than Viper’s permission logic and do not exhibit the shape limitations
required by CN’s symbolic execution [154, p14]. In particular, the predicates inside
the iterated conjunction can themselves be iterated conjunctions: starseq is just
another separation logic resource, of type vprop, which can be passed to functions
and predicates in Steel. As we will see in the rest of this chapter, we heavily rely on
this genericity to nest predicates across abstraction layers.

3.2.1.3 Building slabs from slots

As presented in Section [3.1.2] slab metadata is a bitmap that we here abstract
as a sequence of booleans of suitable length, that is, the content of the bitmap is of
type Seq.lseq bool (nb_slots sc), where Seq.1lseq a n is the type of sequences
of type a whose lengths are equal to n.

Equipped with all of these ingredients, we may now define the separation logic
predicate corresponding to one slab in two more steps. First, given one slab and
its metadata as a sequence of booleans, the following instantiates the just-presented
generic starseq combinator.

let slab_vprop_aux (sc: size_class)

(slab: array U8.t{length slab >= slab_length sc})

(md_as_seq: Seq.lseq bool (U32.v (nb_slots sc)))

: vprop

= let incr_seq = seq_u32_init (nb_slots sc) in

starseq
#(pos:U32.t{U32.v pos < U32.v (nb_slots sc)})
#(option (Seq.lseq U8.t (U32.v size_class)))
(fun pos -> slot_vprop sc slab md_as_seq pos)
(fun pos -> slot_vprop_lemma sc slab md_as_seq pos)
incr_seq
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In this definition, slab_length sc is equal to sc * nb_slots sc, which is the
usable part of the slab as we will see. seq_u32_init is used to provide a sequence
support for our of starseq, composed of the sequence of U32 integers from 0 to
nb_slots sc.

At this point, we need to use the real representation of slab metadata: the bitmap
is actually stored as an array of four 64-bit integers. To this end, we rely on a ded-
icated library providing bitmap support that we developed as part of StarMalloc.
Then, we can use the builtin vdep combinator to express the relationship of de-
pendence between the internal state of the considered slab and its actual metadata.
More precisely, the vdep allows us to express the fact that the actual value of the slab
metadata is consistent with the actual ownership of slots using the slab_vprop_aux
function relying on starseq.

val view_as_bitmap (sc: size_class)
(md_as_seq: Seq.lseq U64.t bitmap_size)
: Seq.lseq bool (nb_slots sc)

let slab_vprop (sc: size_class)
(slab: array U8.t{length slab >= slab_length sc})
(slab_md: array U64.t{length slab_md = bitmap_size})

. vprop

vdep
(varray slab_md)
(fun (md_as_seq: Seq.lseq U64.t bitmap_size) -> slab_vprop_aux sc
(split_1 slab (slab_length sc))
(bitmap_to_bits sc md_as_seq))
*

varray (split_r slab (slab_length sc))

Finally, we observe that this definition has one more tweak. Indeed, only powers of
two divide 4096: to support a larger set of sizeclasses, the array is split in two parts,
using slab_length as the bound between subarrays. First part is composed out of
slots (lines [10| to ; second part is of length 4096 mod sc and unused (line .
The slab_vprop is thus accordingly constructed as a separating conjunction on top
of these two disjoints parts of the slab. In practice, the corresponding StarMalloc
code is slightly more complicated due to bitmap-specific invariants[]

11 0nly the size class 16 uses the 256 bits of the size class. In all other cases, all of the unused
bits are kept equal to zero so that it can be easily checked whether a slab is empty or not, see next
subsection. A custom combinator called vrefinedep mimicking both vdep and vrefine is used
accordingly instead of the vdep combinator to express this property on top of the code presented
above.
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3.2.2 Linking levels together: reusing generic predicates

In the previous subsection, we demonstrated how higher-order combinators can
be used to follow the hierarchical organisation of allocator components in order to
define corresponding separation logic predicates. In this subsection, leveraging F*
support for interface files, we lay the emphasis on the separation between different
parts of the proofs, so that proof structure can be adapted with respect to the
hierarchical organisation of allocator components.

As a first approximation, slabs are full or not, that is, for any given slab, either it
is full or it contains some empty slots: as previously mentioned in Section [3.1.2] this
information is stored as part of size class metadata. To ensure that this metadata is
consistent with the slab metadata of each slab, low-level details regarding slots such
as memory layout inside a slab or even slot allocation and deallocation functions
can be abstracted over. Indeed, all is required is a way to distinguish for each
slab between a full slab and a non-full slab using slab metadata. To this end,
the previously defined slab_vprop predicate can be accordingly refined, using the
vrefine combinato?] as in the following example.

val is_full (sc: size_class) (md_as_seq: Seq.lseq U64.t 4): bool

let full_slab_vp (sc: size_class)
(slab: array U8.t{length slab >= slab_length sc})
(slab_md: array U64.t{length slab_md = bitmap_size})

. vprop

slab_vprop sc slab slab_md
“vrefine”
(fun ((Imd_as_seq,_|),_) -> is_full sc md_as_seq)

Recall that slab_vprop is of the form: vdep (varray slab_md) _ * _ and that
(Ivl, v2|) is the syntax for a dependent pair in F*, corresponding to the underlying
selector type of a vdep combinator.

Abstractly, the size class metadata maps each slab to a value of type status =
| Full | Available. Foreshadowing future extensions (see Section [3.3), we use
an inductive type for status instead of a boolean. As presented in Section [3.1.2]
each size class allocator is equipped with three large memory mappings whose size
is statically fixed. In fact, their sizes depend on a number md_max that is used as an
upper bound for md_count such that:

e slabs, the region of all slabs, is actually composed out of md_max slabs;

e slabs_md, the region of all slabs’ bitmaps (i.e., slabs metadata), is actually
composed out of md_max bitmaps;

12 Actually slightly modified.
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e sizeclass_md, storing metadata about all slabs (ie sizeclass metadata), is an
array storing statuses of length md_max.

The two following functions are helpers to carve out from these large regions the
1-th slab and the i-th slab metadata.

1 val slab_array (sc: size_class)

> (slabs: array U8.t{length slabs = US.v md_max * U32.v page_sizel})
3 (i: US.t{US.v i < US.v md_max})

4+ arr:array U8.t{length arr = page_size}

¢ val slab_md_array (sc: size_class)

7 (slabs_md: array U64.t{length slabs_md = US.v md_max * bitmap_size})
s (i: US.t{US.v i < US.v md_max})

o @ arr:array U8.t{length arr = bitmap_size}

Abstractly, the handling of slabs’ and slots’ metadata share many similarities: in
both cases, metadata maps each slab (resp. slot) to a status (resp. boolean), with
a separation logic predicate capturing slot or slab ownership based on the metadata
value. Leveraging the genericity of the starseq predicate, we can follow the same
proof structure, but with a different instantiation of starseq.

First, instead of the bitmaps used for slots, we rely on the just-defined statuses.
This is due to the fact that slab metadata requires more information than slot
metadata: slabs can be in five different states (full, partial, empty, quarantine,
guard page), requiring the use of an enumeration, while slots are either available or
in use, which can be captured by a simple bit of information.

The second step is to replace the slot_vprop predicate by dispatch below.
dispatch captures the correspondence between the three sizeclass memory mapping.
Indeed, our sizeclass metadata is conceptually a map from slabs to statuses. In our
specifications, however, we use a different formulation that avoids tedious reasoning
on the domain of the map. Since we statically know the number of slabs, and that
each slab has associated metadata, we can represent metadata as a sequence of
statuses of length equal to the number of slots. More precisely, for any suitable 4,
md_region[i] specifies the status of the i-th slab part of slabs, itself based on this
very slab’s metadata, stored in the i-th bitmap part of slabs_md.

1 val t (sc: size_class): Type

2

3 let dispatch (sc: size_class)

4+ (slabs: array U8.t{length slabs = US.v md_max * U32.v page_size})

5 (slabs_md: array U64.t{length slabs_md = US.v md_max * bitmap_size})
¢ (sizeclass_md_as_seq: Seq.lseq status (US.v md_count))

7 (md_count: US.t{US.v md_count <= US.v md_max})

s (i: US.t{US.v i < US.v md_count})
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: vp:vprop{t_of vp == t}

let status = Seq.index sizeclass_md_as_seq (US.v i) in

let ith_slab = slab_array slabs i in

let ith_slab_md = slab_md_array slabs_md i in

match status with

| Full -> full_slab_vprop sc ith_slab ith_slab_md

| Available -> available_slab_vprop sc ith_slab ith_slab_md

It should be noted that it is restricted to slabs whose position is strictly less than the
md_count integer used as a boundary between slabs in use and untouched slabs (part
of per-size class metadata). In addition, foreshadowing another use of starseq, the
underlying selector of the resulting vprop always is of type t; we abbreviated the
corresponding lemma dispatch_lemma as a refinement type over the result line [9

Reusing the starseq combinator in this new setting is then straightforward.

let sizeclass_vprop_aux (sc: size_class)
(slabs: array U8.t{length slabs = US.v md_max * U32.v page_size})
(slabs_md: array U64.t{length slabs_md = US.v md_max * bitmap_size})
(md_count: US.t{US.v md_count <= US.v md_max})
(sizeclass_md_as_seq: Seq.lseq status (US.v md_count))

. vprop
= let incr_seq = seq_us_init md_count in
starseq
#(pos: US.t{US.v pos < US.v md_count})
#(t sc)

(fun i -> dispatch slabs slabs_md size_class_md_as_seq i)
(fun i -> dispatch_lemma slabs slabs_md sizeclass_md_as_seq i)
incr_seq

seq_us_init is used to provide a sequence support for our of starseq, composed of
the sequence of size_t integers from 0 to md_count.

The remaining part is to model storage of sizeclass metadata in memory, and
to link it against the sizeclass_vprop_aux predicate. In our case, we will store
the sizeclass metadata as an array of status values, whose contents are represented
as a sequence. To link the two, we will therefore rely on the Steel vdep predicate
previously presented. We emphasize that adopting a different memory representa-
tion for metadata would be straightforward: the only requirement is to provide a
vprop whose contents can be interpreted as a seq status. This first refinement
from implementation to “concrete” specification provides a first layer of abstraction
which hides implementation details and serves as a foundation for subsequent proof
layers.

let sizeclass_vprop (sc: size_class)
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Figure 3.2: Final SL predicate as a tree where leafs are SL predicate refined and
combined using higher-order combinators (edges).
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(slabs: array U8.t{length slabs = US.v md_max * U32.v page_size})
(slabs_md: array U64.t{length slabs_md = US.v md_max * bitmap_size})
(sizeclass_md: array status (length sizeclass_md = US.v md_max))
(md_count: US.t{US.v md_count <= US.v md_max})

: vprop

vdep
(varray (split_l sizeclass_md md_count))
(fun v -> sizeclass_vprop_aux slabs slabs_md md_count v)

In the next section, we will see how to refine this to improve performance and
support hardening.

It should be noted that the resulting final SL predicate can be seen as a tree
where most non-leaf nodes are higher-order generic combinators, such as presented
in Figure[3.2] vdep and starseq are used several times in various settings. Although
this combination of predicates is nontrivial, e.g., with nested starseq combinators,
thanks to the use of careful abstraction and combinators introduction/elimination
pairs, this remains SMT-friendly and more generally verification-friendly.
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3.3 Targeting performance and hardening: iterative
verification

Beyond challenges inherent to the outlined architecture, we recall that our chief
goal is to design a verification methodology that allows easily updating and ex-
tending the allocator implementation, while reducing the overhead of adapting the
proofs. As a matter of fact, despite recent advances in proof repair [155, (156, [157],
adapting such proofs when modifying code remains challenging. On the other end of
the spectrum, SMT solvers can automatically discharge verification conditions, and
can thus simplify proof repair when reverifying a modified program or specification.

In this section, we extend our efforts depicted in the previous section leveraging
modular abstractions and Steel support for higher-order separation logic predicates
to ease StarMalloc’s verified implementation as part of our verification methodol-
ogy. Notably, we fully leverage Steel’s design, especially its separation of spatial
proofs, which are tactic-driven, and pure functional predicates, which are SMT-
driven. In Section [3.3.1] we show how to implement a complex data structure called
an arraylist to improve performance regarding sizeclass metadata while preserving
proofs outlined in previous section; in Section [3.3.2] we demonstrate how to effi-
ciently iterate on further refinements of this data structure to implement security
mechanisms.

3.3.1 The arraylist data structure: optimizing sizeclass meta-
data

The predicate sizeclass_vprop gives us a separation logic model of the slabs,
their metadata, and their respective memory representations. It ensures the well-
formedness of the slab architecture, namely, that metadata is coherent with respect
to the parts of each slab that the allocator still owns, that is, that were not given
to clients. While simple, this first model is also inefficient when attempting to pick
a slab during allocation: a linear traversal of the metadata is required to find the
first available slab.

To solve this issue, one natural solution is to use a linked list to keep track of the
available slabs, thus skipping full slabs when traversing metadata. While lists have
a well-known, textbook separation logic specification, one difficulty arises however
when attempting to use them to implement a memory allocator. List-like structures
typically rely on dynamic memory allocation when, e.g., creating and inserting a
new cell, which is exactly what our allocator must implement! To circumvent this
circularity, we leverage the fact that the maximum number of slabs is statically
known, and instead implement a library for linked lists where all cells are part
of one single static array: the sizeclass metadata. We call this data structure an
arraylist.

A standard linked list implementation consists of cells with data and a pointer
to the next element; the corresponding ownership predicate recursively covers all of
the cells in the list. This, however, cannot apply here, as cells are already owned
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by the outer array. A natural solution is to rely on a non-separating conjunction
to combine ownership of the outer array with a shape predicate that captures the
structure of the list. However, the automation facilities (notably the framing tactic)
in the Steel framework do not support non-separating conjunction well.

To circumvent this issue, we rely on two components. First, as we know that all
list elements are located in a given array, we replace pointers to the next element
by array indices, of type size_t. Second, we separate the specification into two
parts: on one hand, the ownership of the underlying array; on the other hand, the
well-formedness of a list operating on a sequence view sizeclass_md, of the array
contents, expressed through is_list.

type cell (a:Type) = {data : a; next: size_t}

let rec is_list' (sizeclass_md,: seq (cell a)) (pred: a -> prop)
(idx: size_t) (count: nat)
: prop =
// Cyclic list
if count > length sizeclass_md, then False
// Terminal case
else if idx = null_idx then True
// Out-of-bound
else if idx < 0 || idx >= length sizeclass_md, then False
else
pred sizeclass_md,[idx].data /\
is_list' sizeclass_md, pred (sizeclass_md,[idx].next) (count+1)

let is_list sizeclass_md, pred idx
= is_list' sizeclass_md, pred idx O

The predicate is_list’ has two particular points of interest. First, it takes as
parameter an abstract predicate pred operating on data, which must hold for all
elements in the list. In our case, we instantiate it below with the property that
all statuses in the list are Available. Second, this predicate does not capture
ownership, and has therefore type prop, and not vprop.

Leveraging our combinator-based approach, we finally tie the list shape with
ownership of the underlying array. To do so, we use the builtin vrefine generic
Steel combinator: vrefine slp p captures the ownership of the vprop predicate
slp while specifying that the predicate p holds on its selector.

let arraylist_sl (sizeclass_md: array (cell a)) (pred: a -> prop)
(idx: size_t) : vprop
= vrefine (varray ptr)
(fun sizeclass_md, -> is_list sizeclass_md, pred idx)
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As the predicate is_list also requires the start index of the list, we store it in an
additional pointer r, and combine it with arraylist_sl using the previously seen
vdep combinator.

let ind_arraylist_sl (sizeclass_md: array (cell a)) (pred: a -> prop)
(r: ref size_t) : vprop
= vdep (slptr r)
(fun idx -> arraylist_sl ptr pred idx)

Equipped with this predicate, we can now propagate changes to sizeclass_-
vprop to replace the simple array of metadata by an arraylist. Importantly, the
link between metadata contents and slabs, captured by the predicate sizeclass_-
vprop_aux remains unchanged. On one hand, the view of predicate ind_arraylist_-
s1 still can be interpreted as a sequence of statuses: its selector type is a dependent
pair: dtuple2 size_t (size_t -> seq (cell status)). An additional ad hoc
combinator dataify is used to transform it into a seq status. On the other hand,
the use of the vdep combinator separates between properties about the underlying
data structure shape (the arraylist) and predicates depending on its contents.

let is_available (x: status) = x == Available

let sizeclass_vprop (r: ref size_t)

(slabs: array U8.t{length slabs = US.v md_max * U32.v page_size})
(slabs_md: array U64.t{length slabs_md = US.v md_max * bitmap_size})
(sizeclass_md: array (cell status){length sizeclass_md = US.v md_max})
: vprop
= vdep

(ind_arraylist_sl sizeclass_md is_available r)

(fun (|idx, sizeclass_md,|) ->

sizeclass_vprop_aux slabs slabs_md (dataify sizeclass_md,))

The example presented throughout this section is highly representative of our
methodology. By relying on custom separation logic combinators, we achieve a high
degree of modularity: case in point, the replacement of the initial metadata array
by a more complex arraylist structure did not impact proofs relating to the meta-
data contents. The definition of these combinators relied on two key ingredients,
namely, dependent types, and the ability to parameterize over separation logic pred-
icates. Our dependently typed combinators also enable genericity, and reduce code
duplication. In particular, by abstracting over the values stored in the array and
predicates they must satisfy, we could define helpers on the generic arraylist once
and for all (omitted here), e.g., to access metadata in constant time or to update the
list, and instantiate them at no extra cost for our specific usecase; this data structure
would be directly reusable in other contexts and with other predicates. Finally, our
structure allowed us to preserve the Steel separation between shape and contents
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reasoning, and to leverage Steel’s facilities for SMT solving: predicates operating on
memory contents, e.g., to reason about indices or on the metadata values, can be
handled by SMT, lowering the cost of verification. In the next subsection, following
our workflow during the development and verification of StarMalloc, we show how
this methodology allows us to continue to efficiently iterate on the arraylist data
structure, progressively obtaining the architecture outlined in Section [3.1.2]

3.3.2 Performance and hardening: arraylist iterations

The arraylists presented in the previous section allow us to efficiently find an
available slab in which to allocate. This model however presents some limitations.

Tracking full slabs and partition invariant. First, while it guarantees that
all slabs in the list are available for allocation, it does not ensure that all available
slabs are present in the list, possibly leading to some unused memory, degrading the
performance of the allocator.

To avoid this issue, we modify our invariants to also model that full slabs form a
list, and that the two lists partition the metadata. Materializing both lists at runtime
presents several advantages; notably, rather than relying on a global universally-
quantified predicate, we can instead perform our proofs in a constructive manner
by directly manipulating those lists, which leads to much better proof performance.
This also makes inductive predicates over those lists much easier to write, a design
decision that will prove useful as we later add even more structure onto our slabs.

Thanks to the structure of our separation logic predicates, these changes are
well-contained. We only need to extend the arraylist_sl predicate, and to add
an additional pointer r; to the head of the new list. In particular, proofs and code
operating at the array level (e.g., to access metadata) or on the metadata sequence
(to tie its values with ownership of the slabs) are entirely unchanged.

let arraylist_sl (sizeclass_md: array (cell a))
(pred, preds: a -> prop)
(idx, idx;: size_t) : vprop
= vrefine (varray size_class_md) (fun sizeclass_md, ->
is_list sizeclass_md, pred, idx, /\
is_list sizeclass_md, pred; idxy /\
partition sizeclass_md, idx, idxj)

let ind_arraylist_sl (sizeclass_md: array (cell a))
(pred, preds: a -> prop)
(r, ry: size_t) : vprop
= vdep (slptr r, “star  slptr ry)
(fun (idx,, idxy) -> arraylist_sl ptr pred, pred; idx, idxj)

Similarly, incremental changes allow us to add support for the additional lists for
partial slabs, as well as quarantine and guard pages needed to harden our allocator.
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Efficient deallocation: doubly-linked lists. A second limitation relates to our
handling of another base operation: freeing memory. While allocation only appends
and removes elements from the head of the list (e.g., moving the head of the avail-
able list to the full list when the slab becomes full) which can be done efficiently,
freeing often requires removing an element in the middle of a list: the client can free
allocated memory in any order, and is therefore not required to free an element in
the slab that last became full. Removing an arbitrary element from a linked list in-
duces a complexity linear in the list length in the worst case; this is at odds with the
performance expected from modern allocators. To circumvent this issue, we instead
replaced our implementation of singly linked lists with doubly linked lists, which
allow removal in constant time. Changes were again small: we needed to extend
the cell struct with an additional prev field, and to replace the is_list invari-
ant by its is_dlist counterpart, capturing additional properties about the doubly
linked list structure. Importantly, our reliance on the SMT solver to reason about
the is_list predicate, enabled by the design of our combinators, greatly simplified
updating proofs when switching to is_dlist: most of the inductive proofs, e.g.,
to show that the is_(d)1list invariant is preserved when inserting or removing an
element, are required by the combinators to have the same structure. This not only
forces modularity, but also imposes the same shape on SMT queries, meaning the
SMT solver was often able to automatically prove the new versions, or only required
minimal changes.

Quarantine list is actually a queue. One last change focused on the handling
of quarantined slabs, by implementing a queue data structure on top of the corre-
sponding doubly linked list. Following our methodology, this change was localized
to the is_dlist predicate corresponding to quarantine in the arraylist_sl pred-
icate. In particular, in addition to not modifying proofs relating to the underlying
array or the link between metadata and concrete slabs, this change also did not
impact helpers and proofs on neighboring lists. Required modifications to interpret
the doubly linked list as a queue were technical, but are a standard algorithmic
construction; we omit them for brevity.

At the end of the day, we get an arraylist refined using the following predicate.

let varraylist_refine (#a:Type)
(prede pred, preds pred, pred,: a -> prop)
(hde hd, hdy hd, hd, tl, size,:nat)
(s:Seq.seq (cell a)) : prop
is_dlist pred. hd, s /\ // list of empty slabs
is_dlist pred, hd, s /\ // list of partial slabs
is_dlist predy hdy s /\ // list of full slabs
is_dlist predy hdy s /\ // list of guard slabs
is_queue pred, hd, tly s /\ // queue of quarantined slabs
Set.cardinality (ptrs_in hd, s) == sizeq /\ // consistent queue size
sizeq; <= Config.quarantine_queue_length /\ // bounded queue
disjoint5 hd. hd, hdy hdy, hd, // lists are disjoint




3.4. GENERICITY AND PARTIAL EVALUATION: CONFIGURABILITY 85

The five ordered lists are: empty slabs, partial slabs, full slabs, guard slabs (that is,
guard pages), quarantine slabs. They are disjoint, as specified using the disjoint5
predicate. predep, 9,4 correspond to the underlying lists predicates; hde p f,9.4 are
the corresponding heads of lists; t1, is the tail of the quarantine list interpreted as
a queue. The function ptrs_in constructs the set formed by a list starting at the
considered head indice: size, corresponds to the size of the set formed by elements
in the quarantine queue, that must not be higher than the (configurable) bound
quarantine_queue_length. Finally, we note that it is only always required for this
data structure to be well-formed that lists are disjoint. Requiring them to form a
partition would prevent any extension of the data structure, which is an additional
requirement to keep metadata consistent when more slabs are needed. Indeed, in
that case, this results in more slabs to tracks, thus using more metadata cells.

3.4 Aiming for a configurable allocator: genericity
and partial evaluation

The approach presented so far focused on designing modular, generic abstractions
that reduced the verification effort, when initially developing verified components as
well as when iterating over it.

In this section, we will see how the benefits of genericity can also appear in
implementation efforts, namely, in making StarMalloc more performant and easily
configurable. In Section we present the reuse of the sizeclass allocator to
improve performance of the large allocator. Then, in Section [3.4.2] we demonstrate
the support for configurable size classes through partial evaluation and genericity.
Furthermore, in Section [3.4.3] we show how to make this configurability competitive
regarding performance, by supporting configurable sizeclass selection function, thus
improving efficient slab memory allocations. Finally, in Section [3.4.4] we lay the
emphasis on the fact that StarMalloc offers configurability through F*-safeguarded
configuration files that are abstracted over in StarMalloc’s implementation, thereby
avoiding end users pitfalls while providing strong correctness guarantees.

3.4.1 Reusing the sizeclass allocator inside the large allocator

We also leverage our generic abstractions when handling large allocations, that
is, allocations larger than a page size. As described in Section[3.1.1] these allocations
are directly forwarded to the OS via the mmap syscall. The main role of the allocator
is to keep track of the pointers currently in use, as well as their size; this is done
through an AVL tree.

Similarly to the lists previously presented, tree-like structures have standard
separation logic definitions; in our setting, the main implementation challenge is
that they typically rely on dynamic allocation to, e.g., create new tree nodes when
inserting a value, which is what the allocator aims to provide. To do this, our initial
implementation was creating and freeing AVL nodes on-demand through the use of
mmap and munmap. This was however largely inefficient, both in terms of speed and
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memory usage: syscalls such as mmap are expensive, and the OS can only provide
memory at the page granularity; much more than needed to store a small AVL node.

To avoid this issue, we instead reinstantiated our code for slab allocations to
support dynamic allocation for AVL tree nodes. Concretely, we instantiated a slab
allocator with only one size class, corresponding to the size of AVL nodes. To
do so, we reused the arraylist_sl predicate and leveraged the genericity of our
implementation in the sizeclass configuration (further described in Section .
Adapting the AVL tree library we implemented to replace node allocation through
mmap by our optimized allocation was then straightforward: node allocation and
deallocation was already abstracting over implementation details, and performing
the change did not impact the rest of the code and proofs.

3.4.2 Configurable sizeclasses, partial evaluation and gener-
icity

General-purpose allocators such as StarMalloc can be used in many contexts:
clients operating in a purely sequential setting might want to disable arenas (de-
scribed in Section to avoid memory waste or even locking (e.g., sizeclass
locking in our setting) altogether, while clients that only perform very small allo-
cations might want to disable the larger sizeclasses. When modifying the allocator
configuration, some changes simply require modifying global variables (e.g., to adapt
the size of a global array), but others are more involved, requiring deeper changes
to the allocator’s implementation (e.g., to initialize different numbers of size classes
for different sizes, and hence with different slot layouts).

When implementing an unverified, configurable allocator in C, a common tech-
nique is to rely on preprocessor macros, which are expanded at compile time into
specialized code depending on static, user-supplied parameters. This is however
error-prone, and not ideal for security-critical code. Performing deep modifications
into the code is also not acceptable; even in a verified setting where these changes
could be safely performed, the effort involved would deter most clients.

In this section, we show how to write a generic Steel implementation, paramet-
ric in a number of arenas and size class architecture, while ultimately retrieving
specialized, idiomatic C implementations after extraction. The key technical ingre-
dient is to leverage custom compile-time reduction through F*’s normalizer (briefly
presented in Section , a technique previously applied to other verification
projects [158, |159, 160)].

Our goal is to write an allocator generic in a size class architecture, described
using a list of size classes 1 and a number of arenas nb_arenas. As sizeclass are
independent suballocators with individual locks and all arenas come with the same
set of sizeclasses, a list of sizeclasses with nb_arenas repetitions of the list 1 can be
used, see Section [3.1.2] As a consequence, we wish to write the size class initializa-
tion function init_size_classes below, which schematically takes as arguments
an array to store sizeclasses objects and sizeclasses mappings (slabs region, slabs
metadata region, sizeclass metadata region) for each of these, as well as a list of
sizes 1 representing the size classes configuration.
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1 let rec init_size_classes size_classes sc_mappings 1 = match 1 with
2 | [1 > 0O

s | sc :: tl -> init_size_class sc size_classes[0] sc_mappings[0];

4 init_size_classes tl size_classes[1..] sc_mappingsl[1..]

¢ let init sc_list nb_arenas () =

7 let 1 = repeat nb_arenas sc_list in

s let size_classes = mmap_sc (length 1) in

o // basically three mmaps, one for each large mapping
10 let sc_mappings = init_sc_mappings (length 1) in

11 init_size_classes size_classes sc_mappings 1

In particular, all of the size classes spanning all arenas are initialized as part of
this initialization. No arena data structure is initialized: it is only at runtime that
threads will be assigned an arena upon their first memory allocation or deallocation
request, using thread-local storage, which is beyond the scope of this section.

While this code is valid Steel and successfully verifies, it is not compatible with
KaRaMeL extraction: pure lists do not extract to C (they would require a GC,
since their ownership is not tracked). For presentation, we will assume that a client
wishes to have two size classes: 16B, 32B, and two arenas; they will specify this by
modifying the global variables sc_list and nb_arenas. We rely on the F* primitive
norm to instruct the compiler to reduce the application init sc_list, according to
the reduction steps custom_steps (omitted), which include, e.g., unfolding the defi-
nition sc_list and reducing pattern matchings operating on lists, but not unfolding
the definition of init_size_class.

1 let sc_list = [16; 32]
2 let nb_arenas = 2
3 let init = norm custom_steps (init sc_list nb_arenas)

After normalization, all the recursive calls to init_size_classes have been un-
folded, and all occurrences of lists are gone, which enables KaRaMeL to extract to
the idiomatic C init shown below.

1 // Generated C code after normalization

2 void init() {

3 size_classes* size_classes = mmap_sc(4U);

4+ uint8_t* slabs_region = mmap_u8(4096 * metadata_max * 4U);

5 uint64_t* slabs_md_region = mmap_u8(4 * metadata_max * 4U);

¢ arraylist_cell* sizeclass_md_region = mmap_cell(metadata_max * 4U);
7 // 2 arenas with 2 stze classes inside of each = 4 size classes

s sc_mapping* sc_mappings = divide_mappings(slabs_region,

9 slabs_md_region, sizeclass_md_region, 4U);
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// first arena

init_size_class(16, size_classes[0U], sc_mappings[0U]);
init_size_class(32, size_classes[1U], sc_mappings[1U]);
// second arena

init_size_class(16, size_classes[2U], sc_mappings[2U]);
init_size_class(32, size_classes[3U], sc_mappings[3U]);

3

// Generated code as part of the rest of the intitialization
const uint32_t sizes[4U] = {16U, 32U, 16U, 32U};

We comment in the last paragraph of this subsection as to why the sizes array of
type const uint32_t sizes[] is useful.

This approach makes it straightforward to configure StarMalloc according to a
client’s needs. We only need to modify configurable variables sc_list and nb_-
arenas before recompiling our project; apart from this variable, all the code and
proofs are left unchanged. We apply this methodology to all parts of StarMalloc
where the static configuration impacts the shape of the code; this also includes
selecting an appropriate size class in which to allocate (Section .

Implementation consequences. The initialization we described is quite com-
plex, in the sense that it does not only rely on purely static initializers. Instead,
global mutable state such as the size_classes array is modified at initialization
before being used by all size classes of all arenas. This initialization is only done
once with exclusive ownership on just-mmap’d memory that is not further modified
during the entire execution of the allocator. In a naive verification setting, all subse-
quent memory accesses to these mutable size classes data structures would however
require in itself using a mutex, very likely incurring performance overhead. To avoid
this issue, we encode the fact that this array of size classes high-level state is never
modified by using Steel’s support for dynamically allocated invariants, briefly de-
scribed in Section 2.2.3.3

Let us describe schematically the way we proceed to this end. In a way similar to
the creation of a lock, we create during initialization a Steel invariant associated to
the array of size classes, losing plain access to it. The created invariant can then
be used to provide read-only access to this array. As part of this optimization,
we developed a dedicated “frozen array” library, including the following functions:
create_ro_array is used at initialization, index during the entire execution of the
allocator.

val create_ro_array (#a: Type) (r:array a)
(s: Ghost.erased (Seq.lseq a (length r)))
: Steel (ro_array r s)
(varray r) (fun _ -> emp)
(requires fun h -> asel r h == Ghost.reveal s)
(ensures fun _ _ _ -> True)
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val index (#r:array a) (#s:Ghost.erased (Seq.lseq a (length r)))
(ro: ro_array r s) (i: US.t{US.v i < length r})

: Steel a

emp (fun _ -> emp)

(requires fun _ -> True)

(ensures fun _ x _ -> x == Seq.index s (US.v i))

The compiler however is not necessarily aware of the fact that this array only is
read. To further improve performance and code quality, we logically tie some of the
content of the size classes array and a top-level immutable array together, leveraging
Steel’s support for it, briefly described in Section [2.2.4] This array only contains
statically known size classes; implementation prioritizes accessing it over the size
classes array when possible. The compiler can in turn determine that these reads are
performed to a read-only array. Finally, this justifies the usefulness of the additional
const uint32_t sizes[] array in the previous C code snippet.

3.4.3 Configurable sizeclass selection function

As previously mentioned, our support of different size classes configurations de-
parts from hardened malloc’s implementation, which hardcodes one specific con-
figuration. Our approach allows us to easily adapt StarMalloc to a wide range of
contexts; however, naively implemented, it can also come at a performance cost.
Configurations are abstract in the generic Steel code that implements, e.g., size
class initialization; these functions cannot be optimized based on one concrete con-
figuration.

One telling example is our function selecting a size class in which to allocate,
based on the number of bytes requested. To be applicable to any list of size classes,
our generic implementation successively compares the requested number of bytes
n to the size of each size class, until it finds one large enough to accommodate
n. After specialization, this results in a cascade of if-then-else branching, which
can be expensive when branch prediction is poor. Leveraging its specific choice of
configuration, hardened malloc instead performs bitwise manipulations on n to find
an appropriate size class in constant time. To address this inefficiency, we leverage
well-known compile-time specialization techniques in F* [160], and allow the user to
provide not only a choice of size classes, but also a corresponding, provably correct
size class selection function. In the version of StarMalloc used in our evaluation (see
Section , we pick both the size class configuration and the selection function
used by hardened malloc.

This can be summed up using the main steps of our iterative development. First,
only a quite restricted set of size classes was supported, namely the set of powers
of 2 between 16 and 4096, that is, 9 size classes. Lifting the sizeclass restriction, we
adopted the set of 28 sizeclasses used by hardened_mallocig in order to be eventu-

13Regarding sizeclasses, one difference remains: the sizeclass 48 is currently unsupported by
StarMalloc to simplify reasoning regarding bitmaps invariants.
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ally able to proceed with a fair performance comparison. At this point, when doing
performance experiments, we noticed some variability between old and recent work-
stations; testing with an unverified optimized selection function seemed successful
and we thus proceeded with implementing a verified optimized selection function.

Finally, please note that while user-provided functions must be provably correct,
the corresponding type used as specification does not capture any notion of optimum,
e.g., the sizeclass selection function always selecting the largest sizeclass would be
deemed correct. In addition to that, in line with hardened malloc’s implementation,
no support for constant-time sizeclass selection function suitable for aligned_alloc
has been implemented yet.

3.4.4 Configurable security mechanisms

This style is pervasive and also apply to most security mechanisms: for in-
stance, quarantine, guard pages, and zeroing are all conditional on F* compile-time
switches, meaning that if the user opts out of those, F* completely eliminates the
corresponding if false expressions and those features are absent from the gen-
erated C code. We emphasize that this specialization at extraction-time does not
extend our trusted computing base: F*’s normalizer is a key component of its type-
checker, and hence already part of the Trusted Computing Base (TCB), further
discussed in Section B.5.5]

From a practical verification point of view, all actual configuration values are
abstracted behind an interface file. This has two important consequences. First,
proven theorems and their associated proofs hold for a generic set of configuration
values, that is, for any set of configuration values. As a consequence of this, they fully
depict the correctness of StarMalloc and are stronger than in the case where they
would hold given fixed configuration values. We examine in more details theorems
associated to StarMalloc’s verification in Section Second, given a state where
all of the project has been verified and extracted, modifying configuration values and
extracting again to update the produced C code is extremely fast. Indeed, given the
interface file serving as an abstraction barrier, there is no need to reverify the whole
project, which the verification toolchain automatically determines.

To be more precise, only code actually needing concrete configuration values,
such as the list of size classes and the number of arenas for the aforementioned
generic functions that are partially evaluated through normalization, needs to be
verified again in such a setting. Only this part of StarMalloc’s implementation
explicitly breaks the configuration file interface through the use of the F* builtin
friend keyword.

Conclusion. All in all, StarMalloc uses a slightly different approach than that
of hardened malloc. As a matter of fact, while StarMalloc offers configuration
switches in a F* file safeguarded by the verification toolchain, hardened malloc
provides the user with configurable switches as part of user-editable dedicated con-
figuration files (config/default.mk and config/light.mk, see |100]), whose static
values (booleans or integers) are imported manually through make and then used in
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the code as simple macros. The associated integer values are guarded by a set of
C static_assert compile-time checks. Overall, this is is a careful version of the
standard way to proceed using C macros, as previously mentioned in Section [3.4.2]
In addition to that, StarMalloc provides additional configurability, with the possi-
bility for a user to change the supported set of size classes (and the corresponding
sizeclass selection function, see Section [3.4.3)); excluding large size classes is the only
way to configure the otherwise “hardcoded” sizeclasses set on hardened malloc’s
side.

One could object that this comes at the cost of non-configurable C code on
StarMalloc’s side. In fact, this lower-level configurability on the C code more likely to
be used by end users could be restored for simple configuration options (actually the
configuration switches provided by hardened malloc) through KaRaMeL’s support
for emitting macros[t

As a final word regarding this matter, this signals that configurability is not lost
as a consequence from verification in our case, rather far from it. In line with other
verification projects [158, |159} 160], we leveraged compile-time reduction through
F*’s normalizer to obtain a configurable memory allocator.

3.5 Modeling as part of the verification process

In this section, we present our functional correctness theorems, corresponding
to specifications of our verified memory management functions using Steel, and the
underlying TCB, including required axiomatizations of low-level functions used as
part of StarMalloc’s implementation. This is all the more important since modeling
both the desired correctness properties and the “outside” environment is necessary
as part of the corresponding proof and forms one of its possible weakness, beyond
the rest of the TCB as the usual list of software components.

We start by giving an overview of the basis of our functional correctness theo-
rems in Section In addition to that, we present how we specify the correctness
of hardening features in Section [3.5.2] We then move onto the modeling of special-
ized versions of syscalls in Section [3.5.3] demonstrating that preciseness is both a
matter of correctness and of performance in our setting. Furthermore, we give some
examples of additionally required low-level axiomatized functions in Section [3.5.4)
modeling being limited to what is strictly necessary. Finally, we examine StarMal-
loc’s Trusted Computing Base (TCB) in Section [3.5.5]

3.5.1 Functional correctness theorems

Leveraging Steel support for CSL to specify and prove the correctness and safety
of concurrent F* programs, we target the functional correctness of standard APIs
required to form a real-world allocator.

As an example, a minimum specification of memory allocation expressed in Steel

14E.g., using the CMacro attribute on F*’s values.
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that forms the basis of our functional correctness theorem for malloc is the following.

val malloc (size: size_t)
: Steel (array uint8_t)
emp (A r -> null_or_varray r)
(requires A hO -> T)
(ensures A hO r hl -> not (is_null r) == length r > size)

That is, as mandated by the C standard, requesting an allocation be made through
malloc of size size, the returned value either is a null pointer or a pointer pointing
to a memory block of at least the specified length size. Other C requirements
regarding allocation and deallocation were described in Section [2.1.1} alignment
requirements and their modelization are described in Section [3.5.3]

Similarly, a minimum specification of free expressed in Steel forming the basis
of our corresponding functional correctness theorem is the following.

val free (ptr: array uint8_t)
: SteelT bool
(null_or_varray ptr)
(A b -> if b then emp else slarray ptr)

That is, the returned value specifies whether deallocation was successful or not.
In turn, this value can be used by the C wrapper (more on this below), e.g. to
determine whether a failure should be emitted to account for the deallocation failure
and thus aborts the entire process. By default, this is the case, thus enforcing some
basic strictness discussed in Section [2.1.4.4] Finally, this explains what happens
in case of deallocation failures that were described as “deallocation process stops”
in Section and in Section 3.1.2} a failure can be emitted by the C wrapper

depending on the returned boolean.

The need for C wrappers is justified by the following. When written in the
KaRaMeL-compatible fragment, Steel code extracts to idiomatic C code. For in-
stance, the Steel malloc signature above will yield the following standard C function
prototype: uint8_t* malloc(size_t size). This signature is more precise than
that of the C standard (uint8_t* instead of voidx); in practice, we add a wrapper
that performs a cast, so as to match the expected ABI and thus provide a drop-in
replacement for existing userspace memory allocators. The same reasoning applies
for free and other memory management functions. As we will see in Section [4.1.1],
these wrappers, also dubbed “C glue”, only represent a small amount of code.

Once basic functional correctness theorems are established, ensuring that they
remain valid or even refining them, e.g., while adding security mechanisms, can be
done in an iterative way. In turn, this results in additional modeling: this is the
object of next sections.
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3.5.2 Specifying hardening features’ correctness

As described in Section [3.1.3] StarMalloc provides several hardening mecha-
nisms, such as segregated metadata, canaries, or the use of quarantine and guard
pages. Formally establishing security guarantees about hardening mechanisms is an
open question and out of scope for this work, we instead only rely on hardened -
malloc’s design choices. We however wish to prove their correctness, namely, that
their implementation matches their expected design, and preserves the allocator’s
functionalities.

We briefly show how zeroing and guard pages impact our specifications; following
the methodology outlined in Section [3.3] required code changes are often localized
and well-contained.

Zeroing. To specify that allocations must be zero-filled, we extend the specifica-
tion of malloc presented in Section as follows, adding an extra postcondition
in the ensures clause. The postcondition ensures that the contents of the returned
pointer r in the final state h1 only consists of zeros.

val malloc (size: size_t)

: Steel (array uint8_t)

emp (A r -> null_or_varray r)

(requires A _ -> True)

(ensures A _ r hl -> not (is_null r) = (
let r, : seq uint8_t = hl (null_or_varray) in
length r > size /\
// length r = Seq.length r,, thus Seq.length r, > stize
(V (i:nat{i < size}). r,[i] == 0)

)

As mentioned in Section [3.1.3] our free operation takes care of zeroing, and our
malloc operation (and others) takes care of checking that memory is still zero. If
the memory is corrupted, the allocator emits a failure and interrupts the client
program execution.

Guard pages. We previously showed (Section how to extend the arraylist
data structure to support additional slab lists, including one for keeping track of
guard pages. All that is left is to model guard pages using separation logic: we
want to design a vprop guard_slab_vprop capturing that a slab corresponds to a
guard page; this will be the predicate associated to a Guard status by the previously
presented dispatch function.



1

10

11

12

94 CHAPTER 3. STARMALLOC: VERIFYING A MEMORY ALLOCATOR

let dispatch (sc: sizeclass)

(i: US.t{US.v i < US.v md_max})

: vprop

let status = Seq.index sizeclass_md_as_seq (US.v i) in
let ith_slab = ... in

let ith_slab_md = ... in

match status with

| Guard -> guard_slab_vprop sc ith_slab ith_slab_md

Importantly, the guard_slab predicate is abstract, and we only provide an intro-
duction rule, as shown below. This induces a form of monotonicity: once a slab
is marked as guard_slab, by virtue of abstraction, it can never be eliminated to
retrieve a separation logic predicate on which the allocator could operate, or that it
could transform to an varray to pass to the client. Under the hood, the introduction
rule is implemented as a call to mmap with the PROT_NONE flag; this ensures that any
access to a guard page will result in a SIGSEGV returned by the OS.

val guard_slab_vp
(slab: array U8.t{length slab >= slab_length sc})
(slab_md: array U64.t{length slab_md = bitmap_size})

. vprop

val guard_slab_intro slab slab_md
: Steel unit
(varray slab x varray slab_md)
(fun _ -> guard_slab slab slab_md)

Additionally, guard pages must appear following a specified pattern, as already
hinted at in Section [3.1.3} typically, every Config.guard_pages_interval pages,
where guard_pages_interval is a statically fixed, user-defined constant. When
increasing md_count, whose purpose is to distinguish between slabs currently in use
and so-far untouched slabs, the sizeclass metadata’s update is specified the following
way.

val extend_set_of_usable_pages
(sizeclass_md: array (cell status){length sizeclass_md = md_max})
(md_count,: size_t{md_count, + guard_pages_interval < md_max})
(idxs: Seq.lseq size_t 7)
: Steel (erased (Seq.lseq size_t 7))



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

30

31

3.5. MODELING AS PART OF THE VERIFICATION PROCESS 95

(varraylist preds
(split_1 sizeclass_md md_count,) idxs *
)
(fun idxs' -> varraylist preds
(split_1 sizeclass_md (md_count, + guard_pages_interval)) idxs' =
)
(requires fun h0 ->
let ptr0 = split_1 sizeclass_md md_count, in
// varraylist selector of type seq (cell status)
let gsO = v_arraylist preds ptr0O idxs hO in
// & lists designed by first 5 indices partition metadata
partition #status gs0 idxs[0..4]
)
(ensures fun hO idxs' hl ->
let ptr0 = split_1 sizeclass_md md_count, in
let ptrl = split_1 sizeclass_md (md_count, + guard_pages_interval) in
// varraylist selectors of type seq (cell status)
let gsO = v_arraylist preds ptrO idxs hO in
let gsl = AL.v_arraylist preds ptrl idxs' hl in
// 5 lists designed by first 5 indices partition metadata
partition #status gsl idxs'[0..4] /\
dataify gsl == Seq.append (dataify gsO) (Seq.append
(Seq.create (guard_pages_interval - 1) Empty)
(Seq.create 1 Guard)
)

That is, partitioning invariants are preserved while the correct number of empty
pages as well as one guard page are added at the end of the set of currently used

pages.

Quarantine. Quarantine is handled similarly: the quarantine_slab predicate is
abstract, so that introducing it as well as eliminating it and thus getting back a
normal array require corresponding OS memory management. Indeed, depending
on some configurable value, slabs put into quarantine may have their permissions
entirely removed. In this case, permissions of a slab are restored when it is released
from the quarantine. In addition to that, quarantined slabs are released in a FIFO
order, which is guaranteed by the varraylist refinement specifications about the
quarantine slabs doubly-linked list refined as a queue.

Canaries. Our current heap canaries implementation is basic and uses magic con-
stant values on two bytes. These values are checked at deallocation: the slab al-
locator’s deallocation function specifies that for deallocation to be successful, these
values must match at deallocation time their original values.
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val slab_free (ptr:array U8.t)

: Steel bool

(varray ptr » [...])

(fun b -> (if b then emp else varray ptr) = [...])

(requires fun _ -> [...])

(ensures fun hO r _ ->
let s = asel ptr hO in
enable_slab_canaries_free ==>

(r ==>
length ptr >= 2 /\
Seq.index s (length ptr - 2) == slab_canaries_magicl /\
Seq.index s (length ptr - 1) == slab_canaries_magic?2

)

3.5.3 Syscalls modeling: both for correctness and perfor-
mance

Memory allocators provide a layer on top of operating systems: they manage
memory obtained through syscalls such as mmap or sbrk, see Section To
implement and verify a mmap-based memory allocator such as StarMalloc, it is thus
necessary to model mmap’s behavior. In this work, there are two different uses of mmap
to request memory from the OS: at initialization for the slab allocator and for each
large allocation request as part of the large allocator. We lay the emphasis on the
fact that we only specify a small subset of all features supported by mmap, relying on
specialized axiomatizations. These F* specialized axiomatizations have C functions
counterparts, whose underlying arguments for mmap were carefully selected.

3.5.3.1 Slab allocator: initialization spec and correctness

In the setting of initializing the slab allocator, we rely on the axiomatization
shown below.

val mmap_init_u8 (size: size_t)
: Steel (array uint8)
emp (fun r -> varray r)
(requires fun _ -> size > 0 /\ size mod page_size == 0)
(ensures fun _ r hl ->
let r, = asel r hl in
length r == size /\
// length r = Seq.length 7,, thus Seq.length 7, = size
(forall (i:nat{i < size}). r,[i] == 0) /\
aligned r page_size
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SL pre/postconditions. mmap_init_u8 is used to reserve a very large amount
of memory that will form the very large memory mapping used for slab allocations.
As this function is only used at initialization, it is assumed that it always return a
valid array varray of bytes: otherwise, initialization of the allocator is aborted[”]

Pure preconditions. Per the mmap specification, mmap fails when the requested
size is equal to zero: this size thus is required to be greater than zero. Furthermore,
as the mapping is used as a large number of pages, the size of the requested mapping
is specified to be a multiple of the page size.

Pure postconditions. Again, as this function is used at initialization, it is as-
sumed it does not fail and always returns an array of size greater that the requested
length. Additionally, this signature does not model resource exhaustion at the OS
level: in practice, if mmap returns NULL at runtime because the OS could not provide
further memory, we raise an uncatchable fatal error and interrupt the execution
of the allocator. Our axiomatization also states that the returned memory is zero-
initialized; to guarantee this, our implementation calls mmap with the MAP_ANONYMQOUS
flag.

Alignment. One last point of interest relates to our handling of alignment, cap-
tured by the predicate aligned r page_size. As seen in Section the C
standard dictates that values returned by malloc must be suitably aligned, in prac-
tice on 16-bytes on modern x86 64. In addition to that, aligned_alloc must
provide overaligned allocations whose alignments are specified by the user.

To formally capture alignment constraints, we rely on the predicate aligned ptr n,
which represents that ptr is aligned on a n-bytes boundary; the postcondition of
mmap_init_u8 captures our assumption that calls to mmap always return a page-
aligned memory. Indeed, no address hint addr at which the mapping should be
created is provided to the kernel: per mmap specification, “if addr is NULL, the
kernel chooses the (page-aligned) address at which to create the mapping”.

This predicate is propagated throughout our code, and is eventually provided
to the client as a post-condition of aligned_alloc (aligned ptr n) or malloc
(aligned ptr 16). Our malloc returns values that are always aligned on a 16-
bytes boundary, a stricter version of what some older ABIs (e.g., Linux x86) permit.
To facilitate reasoning within StarMalloc, we mostly keep the aligned predicate
abstract. Non-linear arithmetic is circumscribed to one-controlled lemma that goes
from aligned ptr page_size to smaller alignment constraints, thus limiting is-
sues with SMT solvers that are notoriously unstable when non-linear arithmetic is
involved 134} |161].

15The corresponding error is emitted by the C wrapper executing the cast from the voidx
returned by the actual mmap call to the desired return type uint8_t.
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3.5.3.2 Large allocator: precise axiomatization and performance

In the previous case, precise axiomatization was a matter of correctness, e.g.,
to define a precise specification of the aligned_alloc API. In this case, it is also
related to time performance, as we will see.

In the setting of large allocations, we rely on the mmap_u8 axiomatization shown
below.

val page_rounding (size: size_t)
: Pure size_t
(requires True)
(ensures fun r -> r > size)

val mmap_u8 (size: size_t)

: Steel (array uint8)

emp (fun r -> null_or_varray r)

(requires fun _ -> size > 0)

(ensures fun _ r hl -> not (is_null r) = (
let r, : seq uint8_t = hl (null_or_varray) in
(forall (i:mat{i < length r}). r,[i] == 0) /\
aligned r page_size /\
// mmap returns pages, not arbitrary-sized arrays
length r == page_rounding size

))

Most of this specification is equivalent to the previous one, mmap_init_u8. The part
that we are interested in corresponds to the line [T5]

As presented in Section 2.1.2.2] the realloc function is part of the C standard
and thus must be supported: it belongs to the set of APIs provided by StarMalloc.
This function most of the time resizes (that it, either expands or shrinks) existing
allocations.

Given that StarMalloc is actually composed out of two main suballocators, in the
latter, there are four possible cases to consider: on one hand, depending on which
allocator initially allocated ptr; on the other hand, depending on which allocator is
responsible for the new allocation (in-place or not).

In this setting, we are only interested in the case where an initially large allo-
cation remains a large allocation. If new_size < 0old_size, old_size being a value
retrieved from metadata (in this case, in the dedicated AVL tree) it is possible to
shrink in-place the existing allocation, and this mostly amounts to a no-op. Other-
wise, in a naive setting, each reallocation entails a call to mmap (as well as a call to
munmap).

During various benchmarks that we will present in Section 4.1.2] we stumbled
onto a quite specific case: a sequence of increasing reallocations, the new size being
at each iteration the old size increased by a few bytes. Comparing StarMalloc at the



3.5. MODELING AS PART OF THE VERIFICATION PROCESS 99

time with hardened malloc showed us that it was actually possible to do better.
Indeed, mmap returns pages, not arbitrary-sized arrays. Thus, when proceeding with
a large allocation, the actual mapping size is equal to a rounding up to the nearest
page_size multiple of the requested size using page_rounding.

This led us to this specification refinement, in association with very few code
changes, that is, storing the actual mapping length in place of the requested length.
This way, the in-place expanding optimization when new_size < old_size inter-
venes in all relevant cases.

In this admittedly quite specific but realistic casd'®] refining our syscall modeling
straightforwardly led to time performance improvements, avoiding a large number
of syscalls in some settings.

3.5.4 Other low-level axiomatization

While underspecification is the common thread through this entire section, ad-
ditional modeling is necessary as part of StarMalloc’s implementation. Once again,
we do not set as a goal to be exhaustive: we only intend to showcase a few relevant
examples deemed representative of the other axiomatized functions.

Zeroing. Ensuring that allocations provided to the client program are empty, that
is, zeroed, is necessary in two distinct cases. On one hand, calloc’s specification
requires it; on the other hand, zeroing is part of StarMalloc’s security mechanisms.
Regarding large allocations, they are performed through the mmap syscall, that guar-
antees to return pages filled with zeroes when used in a suitable manner, as we have
seen. In this case, no additional zeroing is required. On the opposite, small al-
locations require additional handling regarding zeroing. In that case, to perform
zeroing, memset seems suitable at first glance. Unfortunately, modern C compilers
can introduce “silent bugs’” when aggressively optimizing code, as Xu et al. [162]
put it. As a consequence, we rely on the quite common good practice to use a
suitable function resistant to compilers optimizations and end up with the following
unsurprising axiomatization. The C zeroing function actually used is the zeroing
function shipped as part of HACL*"] that presents the advantage of being already
battle-tested.

1 assume val apply_zeroing_u8 (ptr: array uint8) (length: size_t)
2 : Steel unit

s (varray ptr) (fun _ -> varray ptr)

1+ (requires fun _ -> length <= length ptr)

5 (ensures fun _ _ hl ->
6 let v = asel ptr hl in
7 (forall (i:mat{i < length}). v[i] == 0)

6The redis benchmark as part of mimalloc-bench, see Section 4.1.Ql
17 Accessible at the following URL: https://github.com/hacl-star/hacl-star/blob/main/
lib/c/Lib_MemzeroO.cl


https://github.com/hacl-star/hacl-star/blob/main/lib/c/Lib_Memzero0.c
https://github.com/hacl-star/hacl-star/blob/main/lib/c/Lib_Memzero0.c
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Overflow-checking multiplication. The safety and correctness of StarMalloc
are captured through the concise Steel signatures of the API functions exposed to
client programs, e.g., malloc or free. They often have trivial preconditions, when
this is not the case, we attempt to apply defensive programming. For instance,
the calloc function aims to allocate an array of n objects of a given size; its
correctness requires that the multiplication n * size does not overflow. To avoid
API misuses, we define a wrapper that checks this at runtime and emits a failure in
case of overflow, thus exposing a clean API with trivial preconditions to the user.
This can be seen as input sanitizing of some sort.

assume val builtin_mul_overflow (x y: size_t)
: Pure size_t
(requires True)
(ensures fun r ->
FStar.SizeT.fits (v x * v y) /\
VI ==VZX*VYy

)

We here keep the coercion function v: size_t -> nat explicit, to avoid any possi-
ble ambiguity. The FStar.SizeT.fits function indeed takes a nat as sole argument.
The corresponding C code makes use of the compiler builtin __builtin_mul_over-
flow, supported by both GCC and clang/LLVM.

Fast suitable slot position retrieval. We did not dive into the bitmap im-
plementation used to handle slab metadata, as it relies on expected fast bitwise
operations such as shifts to perform metadata retrieval and update when provided
with the position of the considered bit.

However, finding a suitable position in itself may be challenging. Let us consider
the allocation process. Given metadata associated to a slab guaranteed not to be
full, all that is required to proceed with slot allocation is to find a suitable position
within the bitmap. In all cases, iterating over the set of suitable positions would be
too slow: hardened malloc actually relies on a suitable compiler builtin; StarMalloc
also followed this approach and relies on a compiler builtin.

Let us recall that the bitmap layout across the four 64-bit integers depends on
the number of slots, itself depending on the sizeclass. The supported set of size
classes is the following on: Sse = {16,32} U S”, where S” is the set of multiples of
16 between 64 and 4096. As a consequence of that, there are several cases:

e the 16 size class: 256 slots, the bitmap uses fully all four 64-bits integers;

18 Any subset of the integer interval [64,4096] may actually be supported: the restriction corre-
sponds to the previously mentioned alignment requirement to 16 bytes for all allocations, see Sec-

tion @
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e the 32 size class: 128 slots, the bitmap uses fully the first two 64-bits integers;

e sizeclasses > 64 have at most 64 slots: one 64-bit integer is enough to store
metadata.

In this last case, only some part of the integer x is actually used to store metadata:
if n of the number of slots in the considered sizeclass, only the n least significant
bits of x are used. In our setting, given one slab, the i-th bit of the associated slab
metadata stored as a bitmap is set if the i-th slot is currently in use. Therefore,
what is needed is an efficient function finding the first unset bit, starting from the
least significant bits.

To this end, the function f that we axiomatized is defined for any suitable input
x as f(x) = __builtin_ctzll(~ z), where ctzll stands for count trailing zeroes
of a long long integer and ~ is equal to the bitwise not operator, inverting all bits
of z is the aforementioned setting. That is, this function __builtin_ctzll returns
the number of consecutive zeroes starting from the least significant bits, which, if
the argument is not equal to zero, to a valid position of the first set bit. As we are
looking for the first unset bit, ~ x is used as argument instead of x.

The corresponding axiomatization is the following one.

// starting from least significant bits
val nth_bit_u64 (x: uint64) (n:nat{i < 64}) : bool

assume val f (x: uint64) (bound: erased nat)
: Pure U32.t
(requires
x < U64.max_int /\
bound <= 64 /\
(exists (k:nat{k < bound}). nth_bit_u64 x k = false
(ensures fun r ->
// this implies that r < bound
(forall (k:nat{k < 64 /\ nth_bit_u64 x k = false}). r <= k) /\
nth_bit_u64 x r = false
)

As ~ x is used as argument for the builtin in place of z, and due to the fact that
this builtin has undefined result when x = 0, line 7 ensures that this case does
not happen. Next two lines actually refine this precondition, further guarding this
function’s use. As the postcondition states that given all unset bits, the smallest
position corresponding to such an unset bit is returned, it can be automatically
inferred through the SMT that there exists an unset bit in the bound first bits
(starting from the least significant ones).
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3.5.5 StarMalloc’s Trusted Computing Base (TCB)

Similarly to other verification projects, our TCB includes our verification toolchain,
which consists of the F* proof assistant [163] and the underlying Z3 SMT solver [164],
as well as the KaRaMeL compiler [141] that extracts F* code to C. To obtain exe-
cutable code, we thus also need to assume the correctness of a C compiler.

The safety and correctness of StarMalloc are captured through the concise Steel
signatures of the API functions exposed to client programs, e.g., malloc or free.
They often have trivial preconditions: when this is not the case, we attempt to apply
defensive programming. For instance, the calloc function aims to allocate an array
of n objects of a given size; its correctness requires that the multiplication n * size
does not overflow. To avoid API misuses, we define a wrapper that checks this at
runtime, thus exposing a clean API with trivial preconditions to the user.

The last part of our TCB is our axiomatization of the interaction of the OS,
i.e., our model of mmap and munmap. While the corresponding Steel signatures are
designed to be simple and easy to review, the underlying C implementation, calling
the syscalls with specific arguments, needs to be carefully audited. Doing so, we
found a mismatch with our assumptions at the Steel level (a missing flag in mmap),
which we fixed.



Chapter 4

Benchmarking and Deploying
Memory Allocators

Everyone knows that debugging is twice as hard as writing a program in the
first place. So if you’re as clever as you can be when you write it, how will you
ever debug it?

Brian Kernighan and P. J. Plauger,
The Elements of Programming Style, 2nd ed. (1978), p. 10

This chapter is partly adapted from the “StarMalloc” article published at OOP-
SLA’24 [1].

In this chapter, we aim to evaluate StarMalloc through various benchmarks to
check whether it can be considered realistic in terms of performance and in terms
of usability with real-world applications (Section . Given the results that we
obtained in this setting, and during the underlying iterative process of improving
StarMalloc’s implementation, we observed several things. First, that understanding
the performance gap between two similar allocators, in our case hardened malloc
and a then in-development version of StarMalloc, can be quite difficult. Second, that
more generally, allocators exhibit a variety of behaviors depending on the considered
benchmark as well as on the underlying execution environment. Unsatisfied with
the tooling we were equipped with to improve StarMalloc’s performance and our
understanding of allocators behaviors, we developed a tracing prototype specialized
for memory management evaluation relying on the Intel Processor Trace hardware
feature, described in Section 4.2 While the development of our tracing prototype,
named TranscrIPT remains work in progress, as is the analysis of the generated
datasets, we present them shortly in Section
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4.1 StarMalloc: evaluation of the implementation

We now compare StarMalloc with other state-of-the-art memory allocators, in-
cluding security-oriented allocators, e.g., DieHarder [117] and hardened malloc [100],
and regular allocators, such as the glibc allocator; the next-gen musl allocator |165],
part of the musl libc [91]; and the Scudo hardened allocator [166], Android’s default
allocator.

Doing so, we aim to answer the following two questions: i) is our verification
methodology effective enough to retrieve the performance of our initial target, hard-
ened malloc, and ii) is StarMalloc usable as a drop-in replacement in existing,
widely used applications.

Before presenting our evaluation, we first provide an overview of our implemen-
tation, see Section We then present our evaluation, that relies on two sets
of benchmarks. First, to provide a fine-grained performance comparison with other
allocators, we reuse mimalloc-bench [167], a comprehensive and popular suite which
contains both allocator stress-tests and real-world applications (Section . To
evaluate the real-world readiness of our allocator, we then describe our integration of
StarMalloc within the Firefox browser, which required an extensive set of allocator

features, see Section [4.1.3]

4.1.1 Implementation overview

Proof idioms and data structures. As part of the development of StarMalloc,
we defined and implemented a range of generic libraries which we instantiated to fit
our needs. We already presented several of them in the previous sections; they in-
clude data structures (statically allocated doubly linked lists, efficient bitmaps, AVL
trees, top-level const arrays, FIFO queues), proof idioms and generic separation logic
combinators (starseq, extensions and helpers for vrefine and vdep), concurrency
primitives (read-only arrays encoded using dynamically allocated invariants), and
modeling of the interaction with the OS (axiomatization of memory-related syscalls,
e.g., mmap). These libraries required significant engineering and modeling effort,
and represent a large part of our development, totalling more than 13,000 lines of
F* code. While crucial to the development of StarMalloc, they are a contribution
of their own, which significantly decreases the effort required for future systems
verification projects in F*. We organized our codebase to ensure they are entirely
separate from the code of StarMalloc, and hope to upstream them to the Steel
standard library in the future to benefit the community.

Methodology’s scalability. A lot of work related to StarMalloc was founda-
tional, and aimed at understanding how to successfully model, verify, and extract a
low-level view of memory within the framework. Thanks to the proof methodology
presented in Chapter [3] which provides tight abstraction boundaries between the
various components of StarMalloc, iterations on the verified codebase are easier to
perform. Case in point, a first batch of security mechanisms has been implemented
in less than a week, without affecting the rest of the code. The tight abstractions
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Component LoC | Total LoC
Reusable Libraries 13659

Bitmaps 1,520

Arraylist 3,785

AVL 4,332

Misc 4,022
StarMalloc 28,059
C glue 330
Total 42,048

Table 4.1: Lines of F* code for each component of StarMalloc, excluding whitespace
and comments. Misc includes starseq, other helpers related to vdep and vrefine,
plus various library functions not found in F*’s standard library.

have the added benefit of preserving a lot of intermediary verification files, mean-
ing that one can efficiently rebuild and re-extract StarMalloc when iterating on one
sub-component.

Table provides figures about our implementation. StarMalloc currently con-
sists of about 42,000 lines of F* code, extracting to close to 6,000 lines of C code
(excluding whitespace and comments); our reusable libraries form a large part of
this. StarMalloc also contains a small amount of C glue code, needed, e.g., to
match our axiomatization of OS syscalls with actual code calling mmap. Verify-
ing the whole project requires about 15 minutes on a modern machine, leveraging
concurrent builds. Code is available online [2].

Supported APIs. In Section [2.1.2] we have presented the commonly expected
APIs a memory allocator must provide. StarMalloc supports the following functions
among those that were presented: malloc, free, realloc, calloc, posix_mema-
lign, aligned_alloc, memalign, malloc_usable_size, as well as free_sized and
free_aligned_sized without hardening (that is, plain stubs to free)]

The absence of any of these functions can lead to surprising runtime errors.
For instance, if malloc_usable_size is not provided but called by an application,
function symbols will typically resolve to the standard C library implementation,
leading to incoherent results when allocations were performed through StarMalloc.
Applications rarely specify the complete set of APIs they rely on; this led to issues
when trying to experimentally compare StarMalloc’s performance to other hardened
state-of-the-art allocators (Section such as FreeGuard [168| or Guarder |169|
which do not expose all required APIs for our benchmarking suite.

To circumvent this issue, we performed extensive debugging and sleuthing, to
make sure StarMalloc provides all standard, widely used extensions such as mal-
loc_usable_size, hence offering a complete API sufficient for use with the Firefox

!The C23 specifies that this is acceptable for conforming implementation. While adding checks
about the size and the alignment would be reasonable, distinguishing between regular allocations
and overaligned ones would require to duplicate size classes, which would be more involved. We
leave this as future work.
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browser (Section [4.1.3)). For other functions that we identified but do not implement
(yet), such as valloc or pvalloc, we provide C stubs that raise a fatal error when
called, avoiding silent fallbacks to the C standard library. These functions seem
obsolete, and none of the applications we tested StarMalloc with use them.

4.1.2 Performance Evaluation

Experimental Setup. We run experiments on a 12-core (4 performance cores, 8
efficient cores), 16-thread machine with an Intel(R) Core(TM) i5-13600H @ 4,80GHz
processor and 32GB memory, using Linux 6.6 and glibc 2.40. To ensure reproducible
results, we use the “performance” scaling governor (meaning all cores pegged at max-
imum speed without dynamic CPU scaling), and increase vm.max_map_count from
65,530 to 1,048,576 to ensure allocators using a large number of memory mappings,
such as hardened malloc and StarMalloc for guard pages, work properly. Geomet-
rical mean of 5 runs is used. Aiming for an apples-to-apples comparison, we use
the same configuration as hardened malloc when possible, namely, the guard pages
interval set to 2 and the number of arenas set to 4, with quarantine and zeroing

enabled.

mimalloc-bench. Our performance evaluation relies on the mimalloc-bench test-
suite, also used by recent works on allocators |99 170, 171}, 172, [173]. It consists
of two categories of benchmarks. The first series are real-world applications, such
as the Lean compiler, the Z3 SMT solver, or the Redis key-value database. The
second series of benchmarks stress-tests allocators via specific allocation patterns
which are not representative of real-world applications, but that allow one to pin-
point inefficiencies in allocator designs or implementations. As part of this work, we
improved mimalloc-bench by allowing the use of the testsuite with recent compiler
toolchains, and fixed several compilation issues and bugs in benchmarking scripts;
we contributed several patches that were merged upstream.

The most meaningful comparison is between StarMalloc and hardened malloc.
Figures about other allocators help to situate hardened malloc and StarMalloc in
the allocator landscape, compared to both widely used but not necessarily security-
oriented allocators (glibc and the nextgen implementation for musl libe [165]), and
to security-oriented allocators from the academic literature (DieHarder [117]) as well
as from the industry (Scudo [166]). We present experimental results in Table
and Table [4.3] We attempted to include Guarder [169] or FreeGuard [168] in our
evaluation, but did not manage to make them work with our benchmarks. Upon
inspection of the code, this seems due to publicly available versions lacking support
for several widely used functions, such as aligned_alloc or malloc_usable_size.

Total Execution Time. A meaningful way to measure an allocator’s perfor-
mance is to measure the client program’s total execution time. On the first series
of benchmarks (real-world applications), the performance overhead compared to
hardened _malloc is within 0.79x to 1.29x. For the second series (stress-tests), we
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observe that StarMalloc performs within 0.69x to 1.12x of hardened malloc on all
tests, except for one outlier at 1.36x (rptestN).

Broadening our scope to look at other allocators, we remark that our perfor-
mance and hardened malloc’s is further apart from non-security-oriented alloca-
tors like glibc. This is the cost of defensive security measures; ultimately, applica-
tion developers will have to pick their balance between security and performance.
Nevertheless, StarMalloc outperforms mng and Scudo for some benchmarks. More
broadly, we observe a greater variety of perfomance profile across allocators, with
greater variation on micro-benchmarks than on realistic workloads. These results
suggest that no single choice of optimizations is the “right” one for every workload.
Additional benchmarks (not listed here) on different processors show that underlying
hardware can also significantly influence the final results.

Memory Usage. We measure the Resident Set Size (RSS), with swap disabled
to get an accurate reading of the memory footprint of a running program. RSS only
counts pages that are actually used, as opposed to the virtual memory usage that
also contains reserved pages; this is what we want. We observe a wide variety of be-
haviors; in several cases, StarMalloc outperforms hardened malloc, while in others,
its memory footprint is larger. We posit that this variance is due to minor imple-
mentation differences. We remark that glibc’s allocator, too, exhibits suboptimal
behavior compared to hardened malloc on several test cases; this again suggests
that no design is ideal for all applications.

Differences between StarMalloc and hardened malloc. hardened_malloc
supports a large set of security mechanisms for both large allocations and slab allo-
cations [100]. As part of StarMalloc’s iterative verification efforts, we focused on the
slab allocator, arguably the most commonly used one and more complex than the
large allocator. As a consequence of that, we did not implement security mechanisms
for large allocations (guard regions around allocations and delayed unmapping after
permission removal).

Regarding security mechanisms for the slab allocator, we support most of them,
albeit sometimes with minor differences; all mechanisms requiring randomization
are unsupported at the moment, e.g., randomized slot selection within a given
slab. While zeroing and guard pages are implemented identically, heap canaries
and quarantine implementations differ from that of hardened malloc. Canaries are
implemented using constant magic values on two bytes on StarMalloc side, while
cryptographic values (using per size class random state) of eight bytes are used by
hardened _malloc. Regarding quarantine, as outlined in Section [3.1.3] StarMalloc
implements a quarantine of slabs. hardened malloc actually implements a finer-
grained quarantine with additional metadata for each slot.

4.1.3 Integration into Firefox

To assess whether StarMalloc can be deployed as a drop-in replacement into
real-world projects, we integrated it into the Mozilla Firefox web browser, raising
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Benchmark st | hm dh ff iso | mi-sec | mng | scudo sg | sn-sec | glibc
barnes 1.00 | 1.00 1.05 1.01 1.02 1.00 | 1.02 1.00 | 1.00 1.00 | 1.00
cfrac 0.86 | 1.00 | 1.79 | 0.70 | 1.04 0.59 | 0.71| 0.63 | 0.49 0.48 | 0.49
espresso 1.10 | 1.00 1.35 | 0.92 1.05 0.77 | 1.17 0.80 | 0.78 0.70 | 0.78
gs 1.20 | 1.00 | 0.99 1.71 0.64 0.47 | 0.78 0.51 | 0.44 0.51 | 0.44
larsonN 0.81 | 1.00 | 58.11 | 3.27 | 41.76 0.13 | 645 | 0.74 | 0.06 0.05 | 0.06
larsonN-sized | 0.79 | 1.00 | 55.74 | 3.22 | 40.79 0.13 | 6.34| 0.73 | 0.06 0.05 | 0.06
leanN 0.93 | 1.00 | 7.00 | 0.72 | 8.39 0.59 | 2.02| 0.70 | 0.64 0.55 | 0.63
lua 1.26 | 1.00 | ERR | 1.07 | 1.00 0.81 | 1.03| 0.82|0.79 0.80 | 0.79
mathlib 0.99 | 1.00 | ERR | 0.79 | 1.66 0.68 | 0.86| 0.71|0.70 0.65 | 0.70
redis 0.93 | 1.00 | 3.09 | 0.68| 1.53 0.80 | 0.76 | 0.62 | 0.58 0.52 | 0.57
rocksdb 0.92 | 1.00 | ERR | 0.93 | ERR 0.84 | ERR| 0.86 | 0.80| ERR | 0.80
z3 1.29 | 1.00 | 191 | 1.07| 1.40 0.77 | 1.03 | 0.77 | 0.74 0.74 | 0.71
alloc-test1 1.07 | 1.00 | 2.18 | 0.81 | 1.12 0.68 | 0.91 | 0.62 | 0.60 0.52 | 0.60
alloc-testN 1.05 | 1.00 | 10.52 | 0.15| 6.29 0.06 | 4.40 | 0.07 | 0.06 0.05 | 0.06

cache-scratchl | 0.98 | 1.00 | 1.02 | 1.02 | 1.02 099 | 1.01| 0.99 | 0.99 0.98 | 0.98
cache-scratchN | 1.00 | 1.00 1.11 1.11 1.13 1.02 | 1.08 1.02 | 0.96 0.96 | 0.96
cache-thrashl 1.00 | 1.00 1.01 1.01 1.01 1.00 | 1.01 0.99 | 0.99 0.99 | 0.99
cache-thrashN | 1.04 | 1.00 1.08 1.13 1.13 1.04 | 1.04 1.00 | 1.02 1.04 | 1.04
glibc-simple 0.92 | 1.00 1.71 | 0.59 1.03 0.39 | 1.07 0.54 | 0.51 0.29 | 0.50
glibc-thread 1.12 | 1.00 | 12.26 | 0.24 | 7.80 0.05 | 5.68 | 0.06 | 0.04 0.03 | 0.04
malloc-large 1.00 | 1.00 | 1.76 | 1.00 | 0.30 0.10 | 1.00 1.00 | 0.14 0.29 | 0.14

mleak10 0.96 | 1.00 | 1.51 | 11.19 | 1.44 0.96 | 1.33 1.15 1 0.93 1.12 | 0.96
mleak100 1.02 [ 1.00 | 1.14 | 1141 | 1.13 1.06 | 1.09 1.16 | 0.98 1.16 | 0.98
mstressN 0.80 | 1.00 | 9.82 | 143 | 7.72 045 | 447 | 0.71 | 0.44 0.37 | 0.44
rbstressl 0.87 | 1.00 | 3.10 | ERR | ERR 0.77 | 0.83 0.82 ] 0.81 0.75 | 0.80
rbstressN 0.96 | 1.00 | 1.43 | ERR | ERR 0.84 | 0.90 0.83 | 0.83 0.78 | 0.83
rptestN 1.36 | 1.00 | 374 | 530 | 7.82 0.40 | 4.01 1.14 1 0.29 0.44 | 0.29
sh6benchN 0.69 | 1.00 | 22.12 | 0.18 | 10.86 0.03 | 4.99 1.06 | 0.05 0.02 | 0.05
sh8benchN 0.76 | 1.00 | 14.93 | 0.21 | 9.03 0.04 | 2.84 1.40 | 0.05 0.02 | 0.05
xmalloc-testN | 0.85 | 1.00 | 10.32 | 0.24 | 5.44 0.06 | 2.32 3.79 1 0.12 0.04 | 0.12
gmean 0.97 | 1.00 | 3.76 | 1.00 | 247 0.39 | 1.59 0.74 | 0.37 0.32 | 0.37
min 0.69 | 1.00 | 0.99 | 0.15| 0.30 0.03 | 0.71 0.06 | 0.04 0.02 | 0.04
max 1.36 | 1.00 | 58.11 | 11.41 | 41.76 1.06 | 6.45 3.79 | 1.02 1.16 | 1.04

Table 4.2:  Execution time of various programs, measured against the following
allocators: dieharder (“dh”, [117], revision 640949f), FFmalloc (“ff”, |[174], revision
2f24ecf), hardened malloc default version (“hm”, [100], revision 995ce07), isoalloc
(“iso”, |175], revision 2670d5f), mimalloc-secure (“mi-sec”, [99|, revision b66e321),
nextgen malloc implementation for musl libe (“mng”, |165], revision 2ed5881),
scudo (“scudo”, [166], revision 1654d7d), slimguard (“sg”, [176], revision 7d9139a),
snmalloc-secure (“sn-sec”, |95], revision dc12688), StarMalloc (“st”, this work), and
the glibe allocator (“glibc”, version 2.40). All times are normalized and presented
relative to hardened malloc. ERR corresponds to crashes during benchmarking.
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Benchmark st | hm dh ff iso | mi-sec | mng | scudo sg | sn-sec | glibc
barnes 0.97 | 1.00 | 1.07 | 1.56 | 1.08 0.96 | 0.96 | 0.99 | 0.96 0.97 | 0.95
cfrac 1.01 | 1.00 | 1.06 | 35.51 | 2.37 049 | 0.36 | 0.71 | 0.41 0.47 | 0.40
€espresso 2.13 | 1.00 | 0.37| 1.85| 2.38 0.26 | 0.13 0.24 | 0.13 0.55 | 0.12
gs 1.69 | 1.00 | 1.29 | 298 | 1.59 096 | 0.82| 0.87 | 0.81 0.95 | 0.81
larsonN 1.55 | 1.00 | 1.03 | 2.83 | 1.11 1.35 | 0.50 0.54 | 1.18 2.24 | 1.16
larsonN-sized 1.55 | 1.00 | 1.03 | 2.83| 1.10 1.35 | 050 | 0.54 | 1.16 2.25 | 1.17
leanN 1.95 | 1.00 | 1.50 | 8.39 | 2.65 1.05| 0.73 | 0.90 | 0.82 1.16 | 0.82
lua 1.81 | 1.00 | ERR | 1.26 | 1.55 0.96 | 0.75 | 0.90 | 0.78 0.91 | 0.78
mathlib 1.42 | 1.00 | ERR | 247 | 4.03 0.95| 0.68 | 0.80 | 0.77 0.87 | 0.75
redis 0.45 | 1.00 | 1.00 | 2.54 | 2.03 0.55 | 0.42 | 0.50 | 0.39 0.50 | 0.40
rocksdb 1.60 | 1.00 | ERR | 2.27 | ERR 099 | ERR| 094|095 | ERR | 0.95
73 1.18 | 1.00 | 0.95 | 2.46 | 1.92 0.78 | 0.65| 0.71 | 0.63 0.80 | 0.63
alloc-test1 0.89 | 1.00 | 0.91 | 33.28 | 4.16 0.65| 0.59 | 0.72 | 0.63 0.65 | 0.63
alloc-testN 1.55 | 1.00 | 0.42 | 33.16 | 1.10 0.65| 0.30 | 0.36 | 0.35 0.45 | 0.35

cache-scratchl | 1.05 | 1.00 | 1.23 | 16.26 | 2.31 0.85 | 0.81 0.86 | 0.81 0.85 | 0.78
cache-scratchN | 0.99 | 1.00 | 1.22 | 15.83 | 2.27 0.86 | 0.77 0.85 | 0.82 0.84 | 0.79
cache-thrash1 1.03 | 1.00 | 1.20 | 16.08 | 2.31 0.85 | 0.80 0.84 | 0.80 0.84 | 0.78
cache-thrashN | 0.99 | 1.00 | 1.21 | 15.92 | 2.30 0.84 | 0.83 0.84 | 0.83 0.85 | 0.78
glibe-simple 1.26 | 1.00 | 0.82 | 543 | 244 0.25 | 0.22 0.58 | 0.22 0.31 | 0.22
glibce-thread 2.38 | 1.00 | 0.17 | 0.84 | 0.80 0.69 | 0.06 0.11 | 0.07 1.12 | 0.07
malloc-large 1.00 | 1.00 | 1.01 1.18 | 4.63 1.39 1.00 1.00 | 1.30 1.64 | 1.30

mleak10 0.72 | 1.00 | 1.07 | 13.04 | 2.36 0.40 | 0.32 0.69 | 0.34 0.44 | 0.34
mleak100 0.61 | 1.00 | 0.89 | 55.73 | 2.26 0.39 | 0.27 0.57 | 0.31 0.39 | 0.30
mstressN 2.04 | 1.00 | 1.02 1.21 | 2.48 2.32 | 0.84 0.92 | 1.60 1.61 | 1.58
rbstress1 0.96 | 1.00 | 2.38 | ERR | ERR 1.52 | 1.22 1.16 | 0.97 1.00 | 0.98
rbstressN 0.80 | 1.00 | 1.93 | ERR | ERR 2.00 | 1.00 0.94 | 1.31 1.76 | 1.38
rptestN 1.46 | 1.00 | 0.95 | 1.17 | 1.18 0.95 | 0.41 0.44 | 0.47 1.21 | 0.52
sh6benchN 1.05 | 1.00 | 1.53 | 7.38 | 5.09 0.91 | 0.90 1.23 | 1.10 1.03 | 1.09
sh8benchN 1.79 | 1.00 | 1.17 | 1.18 | 2.23 1.21 | 0.92 0.89 | 1.61 1.18 | 1.61
xmalloc-testN | 1.98 | 1.00 | 0.33 | 1.33 | 0.31 1.09 | 0.14 1.04 | 1.24 1.92 | 1.26
gmean 1.24 | 1.00 | 0.95 | 4.63 | 1.93 0.84 | 0.51 0.69 | 0.65 0.90 | 0.65
min 0.45 | 1.00 | 0.17| 0.84| 0.31 0.25 | 0.06 0.11 | 0.07 0.31 | 0.07
max 2.38 | 1.00 | 2.38 | 55.73 | 5.09 2.32 | 1.22 1.23 | 1.61 2.25 | 1.61

Table 4.3: Resident Set Size (RSS) memory usage for various programs, measured
against the same set of allocators as Table 4.2l Numbers are, as before, normalized
and presented relative to hardened malloc. ERR corresponds to crashes during
benchmarking.
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interesting challenges: first, the replacement allocator must provide non-standard
extensions of malloc and free [177|; second Firefox, and hence the underlying
allocator, must work in a highly concurrent setting, supporting many threads and
processes in parallel.

As a matter of fact, to improve performance and security, Firefox ships by default
is own memory allocator, a fork of jemalloc called mozjemalloc [178]. We note that
this is also the case of the Chromium browser, that ships its own memory allocator
called PartitionAlloc [179], highlighting that applications can implement their own
memory allocator and that the actual memory management software stack is more
complex that the one we sketched in Section [I.I A consequence of Firefox using
its own allocator instead of the system one (i.e., the libc’s one) is that benchmark-
ing our memory allocator using this browser as a workload cannot be done in a
straightforward manner.

To explain why, let us recall one platitude: programs are not always required
to reinvent the wheel and can use functions belonging to external libraries; in this
setting, functions are called symbols. Programs using external libraries have two
ways of doing so. On one hand, they can include such libraries statically as part
of the compilation result, at the risk of increased program size, thus using static
libraries. On the other hand, such programs can use dynamic libraries and assume
that the required libraries will be accessible at runtime. In this case, they defer
until the last moment the act of determining where external functions are located
in memory (symbol resolution) so that they can be executed.

As the libc is providing basic functions and assumed to be available, it is com-
monly used as a dynamic library in standard Linux environments. In turn, as the
memory allocator is part of the libc, this can be leveraged to specify at runtime the
allocator that should to be used, when the considered libc supports doing so [93)].
Using a variable called LD_PRELOAD, one can specify to the program’s execution en-
vironment (actually, the operating system’s dynamic loader) to prioritize one library
over others when loading external functions, e.g., in our setting a memory allocator
library over the libc. This technique is called symbol overload [50, section 15.1] and
is the one that the mimalloc-bench benchmarking suite relies on.

Coming back to Firefox’s case, the built-in memory allocator is used by default
as a static library, thus rendering the LD_PRELOAD trick unusable. As a matter of
fact, further demonstrating that StarMalloc is a realistic memory allocator that
can be used in real-world workloads, using Firefox was prompted by the existing
memory allocator literature using Firefox as an evaluation benchmark regarding
time and memory performance [180, 181]. We reused existing methods |181} 180] for
recompiling Firefox, using the -disable-jemalloc flag, leveraging Firefox’s support
for replacing its memory allocator. There exists some documentation regarding
the required set of primitives to be supported by a memory allocator replacing
mozjemalloc [177]. In particular, as outlined in Section , StarMalloc supports
most of the seemingly required functions except statistics-related functions, and
ensure an error is emitted should other expected yet unsupported primitives be
used through the use of dedicated C stubs.

To evaluate the user-facing impact of using StarMalloc, we used JetStream?2 [182],
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a “benchmark suite focused on the most advanced web applications”, also used
by existing memory allocator literature, either through Firefox [183] or through
JavaScript engines [174]. We integrated StarMalloc with Firefox 129.0.2 and suc-
cessfully ran the entire benchmark suite, demonstrating a score overhead of 0.98x
and 1.05x compared to a version compiled with hardened malloc and glibc respec-
tively. We note that the use of dynamic libraries instead of static ones may incur
slight performance differences such as a slight overhead related to symbol resolution.
Thus, we only present benchmarks for non-statically linked allocators using the same
compiled version of Firefox, though results were similar, as also demonstrated by
other benchmarking experiments [184].

We emphasize that JetStream2 does not specifically test the allocator’s perfor-
mance, but rather a comprehensive set of features that must be provided by modern
web browsers. The successful execution of these benchmarks therefore indicates
that StarMalloc indeed provides all the features required by the Firefox browser,
while the score differences, despite not being equivalent to a performance overhead,
suggest its applicability to real-world usecases.

4.1.4 Discussion

Reaching competitive results for StarMalloc’s verified implementation using hard-
ened malloc as a baseline was challenging beyond verification-related hurdles. We
observe that gaining understanding of memory allocators implementations and their
behaviors across various benchmarks was of the utmost importance. On one hand,
carefully structuring StarMalloc was done through higher-level understanding of
hardened malloc’s implementation. On the other hand, “bridging the gap” between
the performance of StarMalloc and hardened malloc required us to gain under-
standing of some optimizations on hardened malloc’s side that lead to significantly
improved results on some benchmarks. In this last case, understanding why a spe-
cific benchmark strains implementations, e.g., leading to crashes or large overhead,
sometimes was a prerequisite to understand the need for some specific optimization.

More specifically, we observe two things. First, while iterating on an incomplete
proof, we note that verification guided debugging: the more a portion of code is ex-
empt from assumptions using sladmits (briefly presented in Section[2.2.3), admits
or assumes, the less it is inclined to exhibit unexpected behaviors; that is, in the
general case, when specifications are correct. The process of verifying a function
itself generally was the following: first, proving only the correctness of the memory
shape (and the first couple of spatial pre- and postconditions), using sladmits when
neededE]; then, moving onto proving the correctness of the memory content (and the
second couple of pre- and postconditions), using admits when needed; finally, re-
fining specifications of the function, using leftover assume eventually progressively
removed. In such cases, Steel was first used as a (most of the time) quite pleasant

2We note pSweeper not strictly is a memory allocator but rather a runtime defense that com-
pletes memory allocators.

3 A noteworthy limitation is that using two sladmits in the same function is not supported by
the automatic frame inference.
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low-level programming language avoiding many pitfalls to the programmer.

Second, debugging mostly amounted to finding relevant traces of memory man-
agement functions. In that case, side effects from the rest of the program are not
relevant, as the considered program can be easily checked to be correct using other
allocators. In turn, isolating memory management functions calls helps determining
the source of the unexpected behavior (e.g., a crash or a performance overhead).

Initially aiming at developing basic corresponding tooling, we found ourselves
in a situation similar to that described by Firefox developers investigating memory
management performance [184]. One of their core ideas it to use a tool that can log
all Firefox internal memory management calls so that any issue that may be related
to it can be reproduced by only replaying all corresponding memory management
calls, using a tool called logalloc [185]. This idea is in fact already present in the
survey on dynamic memory allocation by Wilson et al. [49], that proposes to collect
such traces so that they can be used for “simulation” purposes. While it is fair to
say that we did not look down on so-called print-debugging to implement something
similar for StarMalloc, we were soon limited by the fact that our basic tooling
only supported StarMalloc and faced large performance overhead when used on
demanding benchmarks.

This led us to develop specialized tooling, including a prototype of a generic tool
using baked-in CPU hardware features that we describe in the rest of this chapter.

4.2 Background on profiling and Intel Processor Trace

The need to gain insight into what actually happens when executing programs
generalizes by far our need as verified implementers to gain better understanding
of memory allocators. As the 1994 ATOM paper puts it [186], “Program analysis
tools are extremely important for understanding program behavior. [...| Software
writers need tools to analyze their programs and identify critical pieces of code.”
The need for such analysis tools also predates the wide availability of computers
such as personal computers. Indeed, Bernecky [187| gives example of such tools
that can be dated as back as 1974, namely the use of the PSWE] on IBM S/370
machines to produce per-program processor time statistics.

At this point, it is actually needed to distinguish between two different activities:
on one hand, debugging; on the other hand, profiling. Debugging can be defined the
following way: it is “the diagnosis of mistakes in programmes (sic)” per the title of
a 1950 paper [188|, when such programs that are “presented to the machine are not
those required to obtain the results sought”. This paper considers mistakes on the
venerable EDSA(f] at the Cambridge Mathematical Laboratory in the late 1940s[f|

4Program Status Word

SElectronic Delay Storage Automatic Calculator

5We note that, at the time, hardware reliability was an important concern, as they distinguish
such mistakes from those “resulting from faults in the machine itself”. Today, the hardware is
considered as an “unusual suspect” [189], something that Thomas Nicely also described when
narrating his investigations in 1994 about the FDIV Pentium bug. [190]
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Among those results produced by the machine, we may distinguish between the
results themselves, that is, the output, and the conditions in which they occurred:
the time spent producing them, the amount of energy used to produce them, etc.
Profiling corresponds to this second set of properties. Bernecky [187] mentions two
different definitions of profiling. The 1988 Webster’s dictionary definition is cited in
the paper; according to it, a profile is “a set of data often in graphic form portraying
the significant features of something”. Authors then propose a second context-
specific definition: “for our purposes, profiling is the analysis of a running computer
program in order to determine its actual, rather than predicted, behavior. Profiling
may be performed manually, or automatically, with the aid of hardware or software.
The data collected by a profiling activity [...] typically will allow determination of
instruction mix, storage reference patterns, and instruction reference patterns”.

In this section, we lay out a brief history of hardware CPU profiling techniques,
from sampling to tracing in Section and then proceed with presenting the Intel
Processing Tracing hardware feature in Section used in our memory allocators
profiling prototype, presented in Section

4.2.1 A brief history of hardware profiling, from sampling to
tracing

Hardware features baked into CPUs allowing one to proceed with performance
analysis greatly evolved since the 1990s with Intel Pentium CPUs and their hard-
ware performance counters [191[192]. Such features actually now form a very diverse
set, with modern CPUs generally supporting more advanced features. As Weaver
[193] presents it, a common way to perform profiling is to use sampling, that is,
to interrupt periodically the CPU to record part of its internal state, and from
this extrapolate what the “full system behavior” actually is. They also presents the
fundamental tradeoff at stake in a simple setting between overhead and accuracy,
depending on the sampling frequency: sampling more frequently leads to more ac-
curate results as well as a higher overhead. Modern CPU hardware features try to
help regarding this matter.

Profiling hardware features aim at allowing low-level details of the behavior of
executed programs on the underlying system. As such, as investigated by Sasongko
et al. [194], even if AMD and Intel x86_64 CPUs mostly share the same ISA[
there are important differences in terms of supported baked-in profiling features
depending on the vendor. Let us have a look at the corresponding set of features
for Intel CPUs, most relevant in our case as we used an Intel hardware feature as
the basis for our prototype described in Section [4.3]

Leveraging previous work [193], we distinguish between the following features.

e Sampling through per-sample interrupts. Fixed and programmable perfor-
mance counters are implemented as part of PMUg¥ in CPUs. On one hand,
fixed counters always count the same sort of events, such as the number of

"Instruction Set Architecture
8Performance Monitoring Units
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retired instructions [195]. On the other hand, programmable counters can
be used to measure user-defined classes of events. Using periodical interrupts,
counting events can be made into sampling [196]. Underlying counters actually
are MSR{%} their number and width can vary, depending on the underlying
CPU model.

Low-latency sampling through Intel PEBYU This has two advantages over
bare performance counters. On one hand, theoretically reduced overhead:
samples are stored in a dedicated ringbuffer, interrupts are issued only when
it is full [197, 194]. On the other hand, latency (in terms of instructions)
is lower, thus avoiding so-called skids [195|, that is, mistakes when tracking
instruction causing events (due to microarchitectural details) [198].

Control-flow partial reconstruction through Intel LBRM] Instructions causing a
change in the instruction pointer (beyond usual calls and branches: interrupts,
traps, faults) are logged in a ringbuffer. This allows computing a complete “hot
code” call graph (restricted to “hot code” as this still is sampling) and thus
profile-guided optimization (PGO); as well as debugging crashes, among other
things [199, 200, |197].

Control-flow tracing using Intel Processor Trace (IPT / Intel PT). This tech-
nology has been more recently deployed (since Intel Core 5t generation “Broad-
well” [201} 202]), and does not rely on sampling anymore. It is a CPU tracing
feature that logs any branch instruction details required for exact reconstruc-
tion of the control-flow and compresses it on-the-fly. The basic idea is that
the minimum information required to reconstruct the entire control-flow is
stored: for each conditional, one bit indicating whether the branch was taken
is stored. Precise timing information can also be stored within the compressed
trace. The trace output can then be decoded using the executed binary: the
resulting final file can be very large, as we will see. In most cases, overhead
remain small, around 5% according to several observers [203, [204].

On Linux, developers can access most of this information through the perf

Linux profiler [205], also sometimes called perf_events [206]. It can be seen as the
profiling swiss-army knife and exposes many Linux sampling and tracing features,
though not all of them.

4.2.2 Using Intel Processor Trace in practice

All data collected using IPT is stored under the form of highly compressed binary

packets that can later be decoded, including “taken-not-taken” TNT packets storing
control-flow information. Assuming the executed program binary still is available,
decoding allows one to retrieve the exact control-flow of underlying executed soft-

ware.

it.

Crucially, it is not needed to recompile this software, e.g., to instrument

9Model-Specific Registers
10Processor Event-Based Sampling, or sometimes Precise Event-Based Sampling
"Tast Branch Records
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This two-step process takes the following form using perf. First, data is collected
with perf record and stored by default in the current directory as a perf.data
file. The general syntax is the following:

$ perf record -e intel_pt/$events_config/$modifiers -- cmd

where $events_config allows one to specify which events packets should be pro-
duced and/or collected, such as (possibly very) precise timing packets, such as CYC
packetd'?, $modifiers can be used to restrict tracing, e.g., to userspace or kernel
mode. As an example, a userspace-only trace of the execution of the uname program
printing information about the system can be captured using:

$ time perf record -e intel_pt//u -- uname

yielding the following output:

Linux
[ perf record: Woken up 4 times to write data ]
[ perf record: Captured and wrote 0.085 MB perf.data ]

real Om0.027s
user Om0.008s
sys Om0.011s

Second, collected data can be decoded with perf script or read plain using
perf report -D, displaying raw TNT packets. As collected data is highly com-
pressed, large compressed traces can lead to very large uncompressed data: decoding
the uname trace for calls leads to a file of several MiBs; for branches, of dozens of
MiBs[P As we will see shortly, the trace provides various information, including for
each instruction the name of the underlying program, the thread id, the CPU core
used for execution of the instruction, timing information as well as the executed
assembly instruction. A higher-level view such as the call trace can also be ob-
tained using perf script -call-trace. All in all, a large amount of information
is available for later analysis, which one can filter.

Another feature of IPT that gives it a lot of flexibility is the ptwrite instruction.
This instruction can be used to define additional “software-defined events”, as Chen
et al. [207] put it; in short, it allows one to include custom additional data in IPT
traces [208], at most 64 bits for each ptwrite instruction. Using it is fairly simple: all
is required for the recording step is enabling PTWRITE packets logging corresponding
to executed ptwrite instructions. This corresponds to setting ptw=1 as part of the
aforementioned $events_config, e.g., the following way.

$ perf record -e intel_pt/ptw=1/u -- ./a.out

As an example let us assume that the target program is the following one that only
logs the value 42 (0x2a) using the ptwrite instruction through inline assembly.

12These can be configured so that a timestamp CYC packet is sent whenever another packet is
sent, with a configurable minimum interval expressed as a number of CPU cycles. This number
can be set to be 1.

13Using perf script -itrace=c and perf script -itrace=b respectively.
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#anclude <stdint.h>
void log_ipt(uint64_t x) {
__asm__ ("ptwriteq %rdi");
+
int main(){
log_ipt (0x2a);
return O;

3

The corresponding output when specifying decoding to only filter PTW eventd] is
the following.

a.out 220113 [006] 33450.170884: ptwrite: [...] payload: 0x2a

From left to write, this includes the program currently executed, its thread id (tid),
the CPU core, the time in seconds since the underlying machine boot, and the actual
logged value in hexadecimal, equal to 42 here.

Hardware support for the ptwrite instruction is more recent than support for
IPT (only since Intel Core 12t generation “Alder Lake” 209, Chapter 1.3]). It should
however be noted that perf supports software-emulated ptwrite instruction [202].

4.3 TranscrIPT: hardware-based memory manage-
ment tracing

When improving StarMalloc’s implementation in order to try reach parity with
hardened malloc in terms of performance, it was sometimes unclear as to where last-
mile efforts regarding the performance gap should go. We have seen in Section [4.1.4]
that keeping a precise trace of memory management related functions calls was
considered relevant and used by Firefox thanks to a dedicated tool called logalloc.

However, beyond the fact that this tool only is applicable to Firefox, this tool
has several limitations. On one hand, to the best of our knowledge it does not
keep timing information, e.g., how much time is required for malloc to provide the
user client with a memory allocation. On the other hand, it uses a single mutex to
serialize logs, likely incurring performance overhead as well as distorted traces.

In this section, we present a tool named TranscrIPT that aims at providing one
with precise traces of memory management functions on real-world workloads. From
a high-level perspective, we aim at leveraging collected data to answer questions
such as the following ones. How does allocator X compare to allocator Y regarding
subpage overaligned allocations? regarding the reallocation of subpage allocations
into subpage allocations?®] How does the execution time of deallocation function

1 This can be done using perf script -itrace=w.
15Let us recall that we observed that this pattern can lead to performance issues, see Sec-

tion B33
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vary given the size of the memory block specified to be deallocated? Assuming
collected traces can be replayed, the following questions could also be investigated.
Given one benchmark, is the difference regarding time execution only related to
memory management or an outcome of side effects from the rest of the programs,
such as cache-related issues? On the opposite, is the lack of difference regarding
time execution only due to the fact that memory allocators are not strained by the
considered benchmark?

Our design constraints thus are the following. First, our tool must be generic
and support any pair of memory allocator and benchmark without requiring man-
ual patches of corresponding implementations nor recompilation. Second, collected
traces should be complete and include all memory management related calls with
complete arguments as well as their execution time. Finally, aiming at collecting
precise representative traces that do not significantly stray from normal execution
behaviours, this tool must target a very low overhead in all possible cases.

Research questions that we aim to answer are the following.

RQ1. Using state-of-the-art hardware features, is this set of constraints satisfiable?
Put simply, is this feasible?

RQ2. Can collected traces be analyzed in practice?

RQ3. Does our tool actually improve our understanding of memory allocators?

RQ4. Does our tool compare favorably with other tools, e.g., are collected traces
more precise?

We present preliminary work towards answering these questions. It is likely that
our current prototype will as we make progress i) be further refined ii) only be one
way to get data among a collection of tracing and profiling scripts. Corresponding
code is made available online [3].

We first present TranscrIPT’s current design in Section and then corre-
sponding preliminary results in Section [4.3.2]

4.3.1 Design and implementation

The resulting prototype in its current form leverages Intel Processor Trace and
its extension based on ptwrite instructions logging. TranscrIPT’s main techni-
cal component is a (dynamic) library named hwlogmalloc.so intercepting memory
management functions. Its role is to insert carefully tailored ptwrite instructions
(more on this below) used for two purposes: to store log arguments and returned
values as well as delimit actual memory management calls so that the correspond-
ing execution time of each call can be computed. One additional constraint is that
corresponding encoding of these calls should be unambiguous for later offline anal-
ysis. Using linking tricks, actual memory management calls are redirected to a
user-specified memory allocator, see Figure [4.1]

Using this library and a carefully-tailored perf record invocation, a trace is
produced. Decoding the collected trace can then be done through perf script.
As the collected amount of information can be very large, the resulting compressed
file is never entirely decompressed for analysis. Instead, due to the fact that IPT
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Figure 4.1: Interception of user-specified memory allocator by hwlogmalloc.so.

3. log custom malloc
LD_PRELOAD=. /hwlogmalloc.so:./malloc.so

client program w}

2. specify custom malloc
LD_PRELOAD=./malloc.so
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hwlogmalloc.so

1. standard case
./a.out

ibc malloc user-specified malloc

compression encoding favors compression time rather than decompression time, de-
compression time can be large. Thus, a first analysis pass decompresses the trace,
parses it and compresses the result using an algorithm favoring decompression speed,
all of this on-the-fly, so that the result is stored as a compressed file that can effi-
ciently be read.

We just presented a high-level picture of the process. Now, let us first give more
details about the encoding. To limit overhead, the number of ptwrite instructions
and thus of PTWRITE packets must itself be limited; in addition to that, consecutive
ptwrite instructions can lead to performance overhead. Thus, we try to use exactly
two ptwrite instructions for each memory management call, respectively at the
beginning and at the end of the execution of the function.

As an example, let us present the encoding for malloc, free. It relies on one
low-level assumption, that in x86 64 Linux environments, pointers only are 48 bits
wide [50]. This way, the following encoding can be safely used in practice, with
following naming conventions. The void* returned pointer by malloc is named ptr,
corresponding to a size_t specified size named size; the pointer to be deallocated
by free is also named ptr. Let us also recall that in C, 1UL << n is used to define
an integer such that only its n-th bit is set; x | y denotes the bitwise or of x and y.

function | packet 1 (header) | packet 2
malloc | (1UL << 63) | ((uint64_t) size) | (uint64_t) ptr
free (1UL << 62) (uint64_t) ptr

The first packet is used as a header to distinguish between different functions, while
storing additional information. In the case of malloc, using the fact that pointers do
not use all 64 bits, the integer corresponding to requested allocation size is modified
such that the most significant bit is set. Another implicit assumption making this
encoding unambiguous is that the trace stores the thread identifier, relying on the
fact that a single thread cannot execute two functions at the same time. Thus,
once an unambiguous header has been parsed, the second packet can be parsed
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accordingly.

Other assumptions can be made to encode in a very compact way other memory
management functions. First, regarding requested memory allocation sizes, mem-
ory allocators limit valid allocations to PTRDIFF_MAX, the maximum representable
ptrdiff_t integer, so that pointer difference within provided memory allocations
are restricted to defined behaviors[tf| In fact, a more efficient way of encoding sizes
is to assume that they fit on n bits, e.g., with n = 30, using another tool or runtime
checks to ensure that the considered application does not request memory allocations
whose size cannot be represented using n bits.

Second, regarding pointers, assuming they are 16-bytes aligned, the 4 least sig-
nificant bits are equal to zero: a pointer thus can be represented using 44 bits.
Finally, considering memory management functions presented in Section and
commonly used as seen in Section [4.1], there exists more than 8 memory management
functions of interest and less than 16. Thus, 4 bits are needed for the header.

Using such assumptions, all arguments of memory management functions as well
as their return value can be encoded using two ptwrite packets. As an example,
considering a void* new_ptr = realloc(ptr, new_size) memory management
request, where ptr is of type void* and new_size of type size_t, the amount of
information to be stored is the following.

e 4 bits are required for the header;
e 44 bits are required for ptr;

e 30 bits are required for new_size;
e 44 bits are required for new_ptr.

The total amount of information to be stored in bits thus is 122 bits, that fit on two
64-bit ptwrite operands.

Current version of TranscrIPT only log the following functions: malloc and
free. Supporting other memory management primitives is left as straightforward
future work using the presented encoding.

The decoding step parses resulting trace of PTW packets, and ensures that the re-
sulting final file can efficiently be read and analyzed through the use of a compression
algorithm featuring correct decompression speed for practical reasons.

4.3.2 Preliminary experimental results and perspectives

We use TranscrIPT on various benchmarks that are part of the mimalloc-bench
benchmarking suite (see Section [£.1.2)). This includes allocation-intensive bench-
marks such as the cfrac and espresso sequential benchmarks; as well as multi-
threaded thread tests such as sh6bench. We verified using another tool named
SystemTap providing us with the number of each memory management operation
that these benchmarks mostly feature malloc and free memory management oper-
ations. Finally, we were cautious to only require IPT through perf to trace relevant
packets. In practice, we use ptw=1,fup_on_ptw=0,branch=0 modifiers for the perf
record invocation.

16See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=118220.
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The used experiment settings are very similar to those used in Section [{4.1.2]
Relying on these, we initially had trouble obtaining reliably complete traces, which
manifested itself in the form of varying sizes of resulting collected compressed traces.
Collected traces could then be parsed and checked to be consistent or not with
statistics collected using SystemTap. As an example, traces collected using the
glibc allocator on the cfrac benchmark can vary from dozens of MiBs to roughly
5GiBs.

To improve the reliability of our setup, we refined our experiments settings in
two ways. On one hand, benchmarks were run with high privileges, using the root
user. This improved our results, we thus suspect that some priority-related issue is
at stake and did not investigate it further. On the other hand, completeness of the
trace can be related to limited memory bandwidth. Let us recall that the cfrac
benchmark only takes a few seconds to execute. To improve on this, we enforce the
collection of data to happen in an in-RAM filesystem, thus reducing I/O overhead.
This, in turn, requires a corresponding large RAM size.

Using these refined settings, we observe that the overhead induced by the use of
TranscrIPT generally ranges from 1.5x to 2x, sometimes less, especially when using
other allocator than the glibc one, such as hardened malloc. We posit this is due to
the fact that an allocator with lower throughput (that is, performing, less memory
management operations per second) yields less pressure on the IPT feature.

One of the current limitation is that long-running benchmarks (such as sh8bench
using hardened malloc) yield very large traces that do no fit within the RAM of the
considered system. Overall, while much work is needed to improve our TranscrIPT
memory management tracing prototype, we consider these first results as encour-
aging. We note that an additional recent extension of IPT allows one to entirely
disable TNT packets [209, p.41] even though these form the basis of the control-flow
reconstruction. In our setting, this could be especially interesting to reduce Tran-
scrIPT’s overhead as well as the size of collected traces, as acknowledged by the
documentation [202][7]

We discuss other already existing tools in Section [5.2]

4.3.2.1 Perspectives

Presented preliminary results may give the misleading impression that traces
collected using TranscrIPT can only be used to measure execution time, while doing
so in an admittedly very precise way. In this section, we lay out several possible
research directions extending or repurposing TranscrIPT.

First and foremost, a first reasonably straightforward extension of this work
would allow one to measure memory performance as well. Indeed, the fact that
collected data includes sizes as well as addresses of allocated memory blocks could
be leveraged to reconstruct the memory layout throughout the entire underlying
considered program’s execution. Doing so could rely on knowledge about the page
size of the considered system or even on additional tracing, e.g., of mmap-like syscalls.

"However, we could not find documentation indicating which commercially available CPUs
support this feature.
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This last point could be achieved using a tweaked version of the underlying libc,
recompiled to instrument syscalls with ptrwite instructions.

In addition to that, given one allocator, collected data could be used to assess
the quality of some of its security mechanisms. Indeed, addresses could be used to
determine the reuse frequency of memory blocks and thus the degree of efficiency of
security mechanisms aiming at lowering (virtual) addresses reuse, such as quaran-
tines. The isolation between size classes could also be evaluated in a similar manner.

To conclude by giving a broader perspective, we note that the considered hardware-
based technique to collect the entire memory management APIs calls could actually
be leveraged beyond the context of C userspace memory allocators. Indeed, on
one hand, other programming languages memory management primitives such as
C+-+ new and delete operators (that come in typed versions) can be implemented
as wrappers on top of C malloc and free. In this setting, the isolation between
allocation of different types could be investigated, again by analyzing collected ad-
dresses. On the other hand, the Intel Processor Trace feature can also be used to
trace kernel events. Thus, similar techniques could hypothetically be applied to the
Linux kernel memory allocator, itself under scrutiny regarding its performance and
security properties [149, 210].
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Chapter 5

Related work

5.1 Systems verification

Verification methodologies abound for low-level programming, and given their
critical aspect, memory allocators have long been considered an interesting tar-
get for low-level formal verification. We now focus on those low-level verification
methodologies that have been specifically applied to allocators. Whenever possible,
we highlight differences both in methodology and in verification artifact. We recall
that our mixture of dependent types, separation logic, and semi-automated SMT-
based verification in Steel allows us to meta-program and verify an allocator that
extracts to 6.0kLoC, and features the wide array of defensive measures expected of
a modern, secure allocator.

Wickerson, Dodds, and Parkinson [211] use rely-guarantee [212], in combination
with separation logic, to verify the Unix Version 7 (1979) memory manager, while
reasoning about concurrency. This early memory manager consists of a linked list of
all the blocks. Finding a free block requires linearly traversing all the blocks; block
headers consists of a single memory word pointing to the next block, with the low bit
encoding whether the current block is available. The verification is pen-and-paper,
and as such relies on a manual encoding of that allocator into the framework.

Using the Isabelle/HOL [213] proof assistant, Sahebolamri, Constable, and Chapin
[214] verify a simple sequential memory allocator where a linked list intertwined with
data keeps track of allocation units. The methodology relies on AutoCorres |215],
which was developed as part of the seL.4 microkernel verification effort |71]. This
tool takes C code and produces a higher-level monadic specification, along with a
proof of correctness of the translation. Owing to the (deliberately) simplistic design,
it suffices to directly establish invariants over the result of the translation, without
any particular framework or proof style.

Appel and Naumann [216| verify an array-of-bins malloc/free system using the
Verified Software Toolchain [217]. VST allows reasoning over a deep embedding
of C in Rocq (formerly Coq), via the Compcert semantics. This allows for precise
modeling of C, at the price of possibly more involved proofs. VST relies on a
concurrent separation logic, but unlike Steel, does not use an SMT solver and thus

123
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relies entirely on tactics for automation. This allocator fits in 108 lines of C, is only
proven correct in the sequential setting, and is intended for use with verified clients,
meaning it has no defensive security mechanisms. They do, however, model resource
awareness and exhaustion.

Sammler et al. [218] verify C code using the Iris framework [219] 220| 221], a
recent higher-order concurrent separation logic framework in Rocq. An ownership
discipline, applied on top of C code, allows translating C programs into Iris, and thus
proving their correctness against user-provided annotations. Further properties can
be derived in Rocq by building upon this first layer. The authors verify a thread-safe
allocator (68 C LoC), and a page allocator from a hypervisor (191 LoC). The latter
is their largest case-study.

Pulte et al. [154] propose CN, a new separation logic and refinement type system
that captures almost the entire ISO C standard; the authors claim it allows reasoning
about code as written by the programmer. Like ours, their system mixes manual
proofs with automated SMT-based reasoning. Source C code is translated into a
core language, and the specification language is designed so as to make sure user-
provided refinements remain in a logical fragment that can be decided via SMT.
Anything outside of this fragment (including non-linear arithmetic) needs to be
isolated in noninterpreted functions and reasoned about manually in Rocq. Unlike
the system we used, their system does not support concurrency. Furthermore, we
leverage meta-programming to generate different variants of our implementation; it
is unclear if CN would support an equivalent, C-native implementation based on
macros. Their flagship example is a buddy allocator from Android’s pKVM, which
comprises 364 lines of C code, excluding comments; its verification required several
modification to its C code.

Lattuada et al. [222] leverage Verus [223] as a system verification language to
tackle the verification of several case-study systems. Their verification methodology
heavily rely on SMT-driven proof automation, leveraging the use of linear types to
simplify verification conditions sent to the SMT solver. While separation logic is
not used, Verus supports the use of linear ghost permissions to express ownership
of (raw) heap pointers. In addition to that, authors add to Verus as part of their
systems verification effort a dedicated approach called VerusSync to reason about
concurrency. To this end, they base it on resource algebras, noting that this concept
has been used in concurrent separation logic implementations. As part of their case-
study systems, they port existing verified systems to Verus to enable comparison
with the Dafny [224] and Linear Dafny [225] verification frameworks against which
they compare favorably regarding verification time of the resulting artifacts. Most
importantly, their largest case study is a verified memory allocator based on mi-
malloc 99|, providing malloc and free functions and relying on OS interfaces such
as mmap. The resulting memory allocator called Verus-mimalloc does not support
realloc nor aligned allocations and only support a subset of the mimalloc-bench
benchmarking suite. Verus-mimalloc implementation totals 14k LoC of proofs that
can be reverified in around a minute and results in 3.1k LoC of executable Rust
code.

Other works [226, 227] verify simplistic memory allocators, but to the best of our
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knowledge, none verify a state-of-the-art, competitive, real-world allocator. Zhang
et al. |228| verifies a non-trivial allocator design, but only a specification, not an
actual implementation.

Replacing the system libc’s allocator is a challenge, and requires implementing
a wide API surface (both POSIX and non-standard but widely used APIs) along
with several advanced mechanisms for performance. Furthermore, having a security-
oriented allocator requires implementing a vast amount of features, which increases
the verification burden. This explains why none of the allocators we reviewed claim
to act as a drop-in replacement for the system allocator, and study implementations
that are at best an order of magnitude smaller than the code we verify.

Beyond userspace allocators, previous verification projects tackled verified oper-
ating systems and microkernels, and thus kernel space memory management [229]
230, |72, 231]. Being in-kernel, these allocators have different constraints. First,
kernels have many static data structures so these allocators do not hit many small
heap-based allocations; second, kernels oftentimes have global locks for data struc-
tures |232|, meaning concurrency isn’t as much of a concern for the allocator. Fur-
thermore, in the context of verified OS kernels like above, additional proofs ensure
that the in-kernel allocator does not need to be defensive against other parts of the
kernel, which means even in this context, a full-fledged defensive general-purpose
security-oriented allocator was not typically the object being studied.

On adjacent area of related work is garbage collectors (GCs). Numerous runtime
systems and GCs have been studied and verified, starting with Doligez and Leroy
[233] and Doligez and Gonthier |234], all the way to CakeML [235]. While verifying
a GC involves similar data structures as those of an allocator like StarMalloc, the
verification challenge is different.

Zakowski et al. [236] focus on verifying the mutator in conjunction with the
allocator, and showing that the operation of the two maintains the proper invariants
in a concurrent setting. The authors adopt a modular verification methodology too,
but that is specifically tailored to their implementation of rely-guarantee reasoning
in Rocq. Like us, they proceed incrementally with multiple layers of abstraction to
make verification tractable. The description of the algorithm focuses on the mark-
and-sweep phases, and the only data structure mentioned in the paper is a free list
for the pool of unused references. Finally, we remark that this is a non-executable
specification, which does not yield or is formally linked against executable code.

Sandberg Ericsson, Myreen, and Aman Pohjola [235| operate within CakeML,
meaning that their proofs are carried in HOL4 over actual SML code. The GC
of CakeML relies on a moving approach where fresh allocations within a heap rely
on a bump-pointer allocator, and where compaction happens when the old heap is
copied into the new heap. As such, the challenge lies more in the correctness of the
traversal and reachability analysis, rather than the allocation primitive itself.

Shamsu et al. [237] present a verified garbage collector that can serve as a replace-
ment for OCaml’s GC. Authors prove their GC correct using Low* [141], a language
for low-level programming and verification shallowly embedded in F*. To render
their verification effort tractable, authors adopt a layered verification methodology,
separating proof obligations in these different layers. First layer provides abstract
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graphs and depth-first search reachability specifications. Second layer consists of a
purely functional implementation of a mark and sweep GC operating on a specifi-
cation of the OCaml heap reflecting actual memory layout. Although functional,
this layer already uses machine integers, thus getting closer to the actual final im-
plementation while tackling bitwise operations proof obligations. Third and final
layer implements an imperative mark and sweep GC whose functional correctness
is rooted in the specifications of the functional GC: this last layer is proven to re-
spect these. Extraction to C code is done using KaRaMeL. The resulting artifact is
integrated with OCaml 4, then evaluated on a variety of benchmarks in comparison
with the OCaml GC, used as a baseline, demonstrating competitiveness.

One last area of related work is other languages well-suited for memory manage-
ment systems verification. Ebner et al. [238] describe PulseCore, a new higher-order,
dependently-typed concurrent separation logic shallowly embedded in F*. It can be
seen as a natural continuation of SteelCore |138|, aiming at refining it by remov-
ing one axiom deemed brittle and in particular offers more expressiveness through
higher-order invariants, whereas SteelCore only supported first-order invariants. In-
tended to serve as a semantic foundation for the Pulse proof-oriented programming
language (not described in the same paper), they present several libraries verified
using Pulse, including an OCamlb5-style task pool showcased with some task-parallel
programs.

Cronburg and Guyer [239] describe FloorPlan, a domain-specific language for
describing the layout of memory management structures. FloorPlan accounts for
blocks, bitmaps, linked lists, and aims to automate the generation of these memory
management systems rather than having programmers write error-prone code by
hand. The chief use-case is runtime systems for managed languages, but this could
be repurposed for StarMalloc. FloorPlan, however, produces unverified Rust code,
meaning it is not directly applicable. One could conceivably add a verified Steel
backend for FloorPlan, or conversely, switch the verification technology to, e.g., use
Aeneas [240] or Verus [223] and directly verify the Rust code. Both remain future
work.

5.2 Benchmarking memory allocators

There exists a broad literature regarding memory allocator design, investigating
how to improve memory allocation state-of-the art performance regarding various
constraints, e.g., execution time, memory usage or scalability [52]. We note that
there exists literature regarding the detection of inefficient memory use by applica-
tions such as the Hound runtime by Novark, Berger, and Zorn [241], that we consider
out of scope here.

Corresponding benchmarking efforts account for these various constraints af-
fecting memory allocators design. However, improving an implementation to meet
benchmarking-fixed performance thresholds in comparison with other allocators re-
quires one to gain understanding of both considered benchmarks and allocators,
which is costly. In turn, this calls for tools helping one to improve this understand-
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ing of memory allocators behaviors when benchmarked as well as in the general
setting. In this section, we focus on such tools that have been specifically applied
to memory allocators. We recall that our TranscrIPT prototype provides one with
generic, low-overhead and complete tracing of memory management related func-
tions, making precise offline analysis possible, admittedly at the cost of large traces.

As already noted by Ball and Larus [242|, tools targeting program analysis by
collecting data to this end can be divided into two sorts: profiling tools and tracing
tools. We consider fundamental distinction also relevant to our setting of analyzing
memory allocators behaviours on various programs, as corresponding incurred over-
heads largely differ. Thus, we first consider profiling tools and then tracing tools,
more specifically focusing in both cases on their applicability to memory allocators
and benchmarks understanding.

Profiling. Profiling tools shine at providing coarse data about programs, such as
aggregated data (e.g., mean, minimum and maximum, counts and histograms) or
sampled data that does not require to store the entire trace.

There exists various tools in this area that can be used for the purpose of mem-
ory allocators profiling. A first form of profiling can be done through flamegraphs,
determining through statistical sampling which parts of the code are using most of
a given sort of memory resources (e.g., CPU time or memory). Tools supporting
general profiling include Linux’s perf and eBPF for CPU time resources. Regard-
ing memory profiling, there exists various heap profilers; let us cite the Valgrind
Massif heap profiler [243] and the PROMPT memory profiling framework aimed at
developing fast memory profilers given specified user events, developed by Xu et al.
[244]. We insist on the fact that in our setting, we focus on memory allocators per-
formance, not that of underlying programs memory efficiency: flamegraphs can be
here mostly leveraged to determine where most time is spent inside a given memory
allocator implementation.

Another form of profiling can be done through the collection of the number of
function calls over time. In our setting, this can be interesting to log memory man-
agement related calls to the C standard library, e.g., malloc and free, as well as
to the operating system, e.g., the mmap syscall. This includes tools such as ltrace,
DTrace, SystemTap, bpftrace and lttng. To the best of our knowledge and after
preliminary experiments, the four five tools cannot be used in a scalable manner to
record entire traces of memory management calls, but can only provide efficiently
aggregated data such as the number of calls or histograms of arguments and re-
turned values. We however note that 1ttng would deserve further investigation,
even though it does not to the best of our knowledge support the on-the-fly com-
pression of collected records, thus likely incurring prohibitive memory usage. Despite
what their name suggests, they mostly seem suited to trace the origin of events (and
thus are especially useful to monitor entire systems) rather than to provide complete
execution traces of considered programs.

Finally, precisely measuring memory use over time, although this can seem simple
at first glance, can be in itself a complex endeavor. Memory allocators often provide
as builtins statistics about the client program current memory usage. This can
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also be done through builtin memory allocator support, such as the Google heap
profiler shipped with the tcmalloc allocator. However, programs may be provided
with memory through various means, e.g., directly from the OS or by other memory
allocators in case of partial replacement of the libc’s allocator. The mstat tool [245]
takes advantage of Linux-specific API to track memory consumption of a given set
of processes over time and was created as part of the development of the Mesh
compacting memory allocator by Powers et al. [181]. We note that it does not
depend on the underlying memory allocator.

Zhou et al. |246| tackle the task of comprehensively characterizing the TCMalloc
memory allocator, used in production by applications running on the large servers
fleet in use at Google. As such, this allocator is equipped with specific features,
leveraging the kernel support for fine-grained memory management of contiguous
physical pages for the sake of performance as well as optimizing cache use for the
underlying hardware architecture. Authors leverage fleet through randomized per-
machine brief yet globally continuous profiling to get precise statistics used to per-
form a quantitative analysis of TCMalloc behaviors as well as memory allocation
patterns of the considered applications. Comparing the results with those that can
be obtained by using commonly used benchmarks, they argue that the latter are
insufficient for their use. Leveraging their analysis, they implement a memory allo-
cator optimization based on the observation that the lifetime of an object provided
to client programs is correlated to its size, resulting in both execution time and
memory performance improvements.

Zhou et al. |247] propose a generic memory allocator profiler aimed at detecting
slowdowns incurred by the memory allocator implementation itself and identifying
their causes. To this end, authors rely on one main assumption: that when the
memory allocator provides user clients with one memory block, this may impact
performance during the whole lifetime of this allocation. In this setting, they con-
sider both costs associated with memory management operations or due to memory
accesses, e.g., inducing various cache-related issues. All memory management oper-
ations are intercepted. All allocations addresses along with corresponding sizes are
stored in a hash table and never removed, to distinguished between fresh addresses
and allocations reuses. Average execution times of such operations are stored, such
that small allocations are distinguished from big ones and fresh allocations from
reused ones; execution time for each sort is then compared with that of a reference
allocator. In turn, this information is used to maintain additional information about
the utilization rate of each page used for allocations, as well as corresponding cache
lines. Through hardware-based sampling of PMUs (likely Intel PEBS, although it is
not explicitly mentioned), precise information about cache misses is collected. Sep-
arate information is kept for each thread using thread-local storage, and a precise
report is emitted at the end of the considered program execution, diagnosing the
cause of any measured slowdown. Authors report that 98% of allocators-induced
slowdowns larger than 5% are identified, at the cost of a 10% overhead, identifying
issues in existing allocators.
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Tracing. Obtaining complete traces of memory management-related calls has the
advantage of flexibility, as collected traces can be leveraged in various ways. This
however comes at the cost of higher overhead. We focus here on using such traces
to gain more understanding of memory allocators implementations and why specific
benchmarks strain some of them.

One first direct application of complete traces is that memory management op-
erations can be replayed to provide reproducible benchmarks. Zorn and Grunwald
[248] evaluate in a sequential setting the accuracy of synthetic models of allocation
behaviours with respect to the evaluation of allocators using actual traces. They con-
clude that randomly generated sets of events based on considered synthetic models
only are suitable to evaluate simple programs or simple memory allocation algo-
rithms.

Chilimbi, Jones, and Zorn [249] also aim at measuring the performance of al-
locators in a representative manner. Pointing the limits of using short-running
sequential benchmarks, they call for the use of large allocation traces based on real-
world multithreaded workloads. In turn, they remark that the sharing of such traces
is impractical due to the lack of standardized format. To solve this, they propose
a trace format to record memory management operations while compressing the
corresponding trace. They evaluate variations over their design regarding trace size
and required processing time.

Such comprehensive tracing can also be leveraged for offline analysis. Perks et
al. [250] present WMTools, a toolkit aimed at understanding memory inefficient use
by applications. To this end they implement the tracing of memory events along
with the call site for allocations, collected data is compressed on-the-fly before being
stored in a file. Authors insist on the flexibility left for offline analysis. In addition
to that, they remark that additional runtime overhead would be incurred if the
tracing tool was performing the analysis at runtime. Furthermore, authors evaluate
their tool against the Massif heap profiler part and the Memcheck error detector
both part of Valgrind. Corresponding evaluation demonstrates the competitiveness
of WMTools with an associated overhead ranging from 1x in most cases to 12x in
some cases, noting obtained results regarding Massif overhead are in line with the
documentation, that indicates an overhead range from 5x to 100x.

Delorie, O’Donell, and Weimer [251] refine the mtrace malloc tracing tool part of
the glibc and present a new tool introducing less overhead [252] that can be used to
intercept all memory management calls to the libc for whole-system benchmarking.
The resulting trace is a compact binary record containing allocations addresses and
sizes as well as the call type and the thread id. This trace is progressively written
to a file for further use at runtime. Authors leverage their tool to compare memory
usage when using different memory allocators as well as tweaking memory allocators
tunable parameters.

Ji et al. [253] adopt an approach that they themselves describe as “holistic”.
They include HPC (scientific computing) as part of a diverse set of programs to
be investigated, noting that HPC applications have been less analyzed and charac-
terized by previous work. Most importantly, their goal is to provide a fine-grained
analysis of these. In particular, their study include object and lifetime distribu-
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tion, the evolution of the total memory footprint, memory accesses patterns such
as read-write ratio temporal and spatial locality as well as the sparsity of data. To
this end, they develop a tool that implements two consecutive passes: first one is an
online pass that aims at being fast, with a reported overhead ranging from 1x to 42x
and a median of 1.2x. This pass intercepts every memory management operation
to collect pointers as well as sizes of objects and group allocations by the stack of
the caller. The second pass is an offline pass that can be very costly (reported to
have an overhead up to 1000x). In particular, their goal is to map memory alloca-
tion blocks to variables in the programs source code, to help with further manual
analysis. Interestingly, they state as part of their results that no strong correlation
is observed between variable size and lifetime, what stands in opposition to the key
observation made by Zhou et al. [246]. This suggests once more that there exists a
very large set of possible behaviours for programs, depending on the function they
perform.

Finally, we note that Hertz and Berger [254] leverage tracing of memory man-
agement operations to quantify the performance of precise garbage collage collection
against explicit memory management.

Broader perspective on hardware tracing features. One last area of related
work is other existing hardware tracing features. We remark that the Intel PT fea-
ture is not the only existing low-overhead hardware-based tracing feature. Indeed,
while there does not exist equivalent hardware tracing support on AMD CPUs to
the best of our knowledge, there exists other similar features on different hard-
ware. First, this includes an IPT equivalent on ARM’s side: ARM CoreSight [255].
Furthermore, Apple silicon also comes equipped with a “Processor Trace instru-
ment” [256].

Finally, we note that the Intel PT feature has been used with the aim of achieving
various goals. As a matter of fact, not exhaustively, it has been used for (reverse)
debugging [257|, that is, to determine the root cause of software failures; for low-
overhead data race detection |258]; to improve security through the enforcement of
control-flow integrity policies [259, 260, 261|; as well as for fuzzing [262, 263]. We
believe this indicates the broad capabilities of such hardware-based low-overhead
tracing techniques.



Chapter 6

Conclusion

In this thesis, we aimed at formally verifying hardened memory allocators so
that the resulting code artifact could be used as a drop-in replacement of unverified
software. On the path to this journey, we set two additional goals. On one hand, to
develop a verification methodology extending Steel’s methodology relying on depen-
dent types, SMT-driven verification and modular abstractions to obtain scalable,
iterative verification. On the other hand, to obtain a competitive memory allocator
regarding similar hardened memory allocators.

Overview of our results. We developed StarMalloc, a formally verified hard-
ened memory allocator inspired by the already existing security-oriented memory
allocator hardened malloc. Although StarMalloc does not exhaustively support all
of hardened malloc’s security features, StarMalloc supports a representative sub-
set of these. We note that these security mechanisms are commonly used by other
hardened memory allocators [151] on top of its hardened malloc-inspired intrinsic
security-focused architecture. These security mechanisms complete our implementa-
tion of the entire expected API surface of a memory allocator, whose specifications
reflect the enforcement of requirements mandated by the C standard.

As part of our verification efforts, we leveraged and extended in several ways
the methodology baked in the Steel “formulation” of Concurrent Separation Logic
triples through the division and specialized handling of proof obligations. First, we
developed specialized abstractions in the form of combinators. Second, we carefully
tailored separation logic predicates so that corresponding proof obligations were as-
signed to the most suitable proof “backend”, leveraging separation logic predicates
for ownership and SMT automation for complex reasoning on memory content.
Finally, we reused existing techniques [158] (159, [160] leveraging compile-time re-
duction through normalization for the sake of configurability, yielding a memory
allocator supporting various environments through configurable size classes and se-
curity mechanisms.

Most importantly, we note that the adopted verification methodology enabled
us to scale up to the point of developing a realistic memory allocator, resulting in a
C code artifact of 6.0kLoC corresponding to 42kLoC, a third of which are reusable
libraries. Furthermore, its support for iterative development allowed us to optimize
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StarMalloc’s implementation until exhibiting competitive performance on a large
set of benchmarks, using hardened malloc as the baseline, as well as demonstrating
its applicability to real-world scenarios such as its integration in the Firefox web
browser.

Insights for systems verification. As Charguéraud [62]| puts it, it is “hard to
believe that Separation Logic has not been around |[... since| program verification
exists”. In their retrospective paper, Brookes and O’Hearn [126] express their as-
tonishment regarding how numerous unforeseen extensions have been developed,
accounting for various concurrent programming invariants.

In our setting, using a higher-order CSL allowed us to reason on various such
invariants (mutexes, frozen arrays for initialization), in addition to specify fine-
grained ownership transfers as well as proving correct a disparate set of low-level
data structures. All in all, joining the voices of many other, we firmly believe that
CSL is well-suited to systems verification.

We lay the emphasis on the fact that the separation of proof obligations dis-
charged by distinct specialized proof backends, e.g., the automatic frame inference
tactic or the Z3 SMT solver, was of tremendous importance. Indeed, this enforces
a proof discipline that can be leveraged in two ways. On one hand, properties can
be encoded by targeting the most suitable backend, helping with iterative develop-
ment. On the other hand, this provides the programmer with a high-level view over
the current proof state as well as in the case of Steel with a twofold “sliding admit”
strategy [135] acting as a double-deck sieve for proof refinements.

We think that this could be further improved by additional proof backends.
Indeed, in some cases, we however faced some well-known issues related to SMT
handling, e.g., instability when tackling proofs involving non-linear arithmetic. In
such cases, while benefiting from automation was essential, losing fine-grained con-
trol over proof handling represented a major hurdle. This sometimes led us to very
verbose, manual proofs involving opaque predicates as well as very precise NLA
lemmas encoded in the form of type refinements exactly matching goals. It seems
that a tactic such as the grind tactic provided in the Lean theorem prover [264]
would have exactly met our needs.

Limitations and future work. In some cases, we observed that Steel’s gener-
ation of Verification Conditions was likely suboptimal. In such settings, the SMT
solver is able to successfully discharge in a few seconds at most what we assume
are SMT queries that occupy several gigabytes of RAM and seemingly requiring up
to minutes of CPU work for their generation. Given memory bandwidth limits, in
these contexts, it seems likely that the SMT solver only performs a very limited
traversal of considered queries. Although great care has been put in the design of
Steel’s VC generator [137], we believe this indicates it could be further improved.
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Appendix A

Implementation of linked lists using
Steel combinators

A.1 A basic linked lists library using combinators

In this section, we include a basic linked lists library that is defined using Steel
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23
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25

combinators.

module LList.Selectors

ope
ope
ope

n Steel.Effect.Atomic
n Steel.Effect
n Steel.Reference

module Mem = Steel.Memory
module L = FStar.List.Tot

module G

noe

FStar.Ghost

q

type cell (a: TypeO) = {
next: ref (cell a);

data: a
}
let t (a: TypeO) = ref (cell a)
let is_null_t (#a: TypeO) (ptr: t a) = is_null ptr
let next (#a: TypeO) (c: cell a) : t a
= c.next
let mk_cell (#a: TypeO) (next: t a) (data: a)
= {next; data}
let null_rewrite (#a: TypeO) (ptr: t a) (_:unit)

: GTot (list a)

(]
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26

27 let rec 11listO (#a: TypeO) (ptr: t a) (n: G.erased nat)

28 . Pure vprop
20 (requires True)
so (ensures fun r -> t_of r == list a)

31 (decreases G.reveal n)

32 =
33 1f (G.reveal n = 0)

34 then (

35 pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr)
36 )

37 else (

38 (vdep

39 (vptr ptr)

40 (fun v -> 11ist0 v.next (G.hide (n-1))))

41 vrewrite’

42 (fun x -> (dfst x).data :: (dsnd x))

43 )

44

15 let 1list_sl (#a: TypeO) (ptr: t a) (n: G.erased nat) : Mem.slprop u#l
46 = hp_of (11istO ptr n)

47

ss let 1list_sel (#a: TypeO) (ptr: t a) (n: G.erased nat)

19 @ selector (list a) (1list_sl ptr n)

so = fun m -> sel_of (11istO ptr n) m

51

52 [00__steel_reduce__]
53 let 1list' #a r n : vprop' =

54 {hp = 1list_sl r n;

55 t = list a;

56 sel = 1llist_sel r n}

s7 unfold

ss let 1list (#a: TypeO) (r:t a) (n: G.erased nat) = VUnit (1llist' r n)
59

o0 [00 __steel_reduce__]

o1 let v_1list (#a: TypeO) (#p: vprop) (r:t a) (m: nat)

2 // some boilerplate

63 (h:rmem p{FStar.Tactics.with_tactic selector_tactic (

64 can_be_split p (1list r n) /\ True)})
6s @ GTot (list a)
66 = h (1llist r n)

67

6s let 1list_to_1listO (#opened:_) (#a: TypeO) (ptr: t a) (n: G.erased nat)

6o . SteelGhost unit opened
7o (1list ptr n)
7 (fun _ -> 11listO ptr n)

72 (requires fun _ -> True)
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(ensures fun hO _ hl ->
hO (1list ptr n) == h1l (11listO ptr n)
)

change_slprop_rel (1list ptr n) (1listO ptr n)
(fun x y -> x == y)
(fun _ -> ()

let 1listO_to_llist (#opened:_) (#a: TypeO) (ptr: t a) (n: G.erased nat)
: SteelGhost unit opened
(11ist0 ptr n)
(fun _ -> 1list ptr n)
(requires fun _ -> True)
(ensures fun hO _ hl ->
hO (11istO ptr n) == hl (1list ptr n)
)

change_slprop_rel (11listO ptr n) (llist ptr n)
(fun x y -> x == y)
(fun _ -> ()

let 11istO_norm_nil (#a: TypeO) (ptr: t a) (n: G.erased nat)
: Lemma
(requires G.reveal n = 0)
(ensures
pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr)

(11ist0 ptr n)
)

assert_norm(begin
if (G.reveal n = 0)
then pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr)
else (
vdep (vptr ptr) (fun v -> 11istO v.next (n-1))
“vrewrite”
(fun x -> (dfst x).data :: (dsnd x))
)

end

11ist0 ptr n)

let 11istO_sl_nil (#opened:_) (#a: TypeO) (ptr: t a) (n: G.erased nat)
: SteelGhost unit opened
(11ist ptr n) (fun _ -> 1llist ptr n)
(requires fun _ -> G.reveal n = 0)
(ensures fun hO _ hl ->
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hO (1list ptr n) == hl (1list ptr n) /\
v_1list ptr n h0 == []
)

llist_to_11istO ptr n;
1listO_norm_nil ptr n;
let sO : G.erased (t_of (11istO ptr n))

= gget (1listO ptr n) in
let s1 : G.erased (list a)

= s0 in
change_equal_slprop

(11ist0 ptr n)

(pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr));
elim_vrewrite (pure (is_null_t ptr)) (null_rewrite #a ptr);
intro_vrewrite (pure (is_null_t ptr)) (null_rewrite #a ptr);
change_equal_slprop

(pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr))

(11ist0 ptr n);
1listO_to_llist ptr n;
noop ()

let 11istO_norm (#a: TypeO) (ptr: t a) (n: G.erased nat)
: Lemma
(requires n > 0)
(ensures
(vdep (vptr ptr) (fun v -> 1listO v.next (n-1))
‘vrewrite’
(fun x -> (dfst x).data :: (dsnd x)))
(11ist0 ptr n)
)

assert_norm(begin
if (G.reveal n = 0)
then pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr)
else (
vdep (vptr ptr) (fun v -> 11istO v.next (n-1))
“vrewrite®
(fun x -> (dfst x).data :: (dsnd x))
)

end

11ist0 ptr n)

let 11istO_sl_subst (#opened:_) (#a: Type) (ptr: t a) (nl n2: G.erased nat)
: SteelGhost unit opened
(vdep (vptr ptr) (fun v -> 11listO v.next nl)
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167 vrewrite’

168 (fun x -> (dfst x).data :: (dsnd x)))

wo  (fun _ -> vdep (vptr ptr) (fun v -> 1listO v.next n2)
170 “vrewrite”

171 (fun x -> (dfst x).data :: (dsnd x)))

12 (requires fun _ -> nl == n2)

173 (ensures fun hO _ hl ->

174 h0 (vdep (vptr ptr) (fun v -> 1listO v.next nl)
175 “vrewrite”

176 (fun x -> (dfst x).data :: (dsnd x)))

177 ==

178 hl (vdep (vptr ptr) (fun v -> 11istO v.next n2)
179 vrewrite’

180 (fun x -> (dfst x).data :: (dsnd x)))

181 )

182 -

153 change_equal_slprop

184 (vdep (vptr ptr) (fun v -> 1listO v.next nl)
185 “vrewrite’

186 (fun x -> (dfst x).data :: (dsnd x)))

187 (vdep (vptr ptr) (fun v -> 1listO v.next n2)
188 vrewrite’

189 (fun x -> (dfst x).data :: (dsnd x)))

190

191 val 11istO_sl_pack (#opened:_) (#a: TypeO) (ptr: t a) (n: G.erased nat)

192 : SteelGhost unit opened

193 (vdep (vptr ptr) (fun v -> 11listO v.next n)
194 “vrewrite®

195 (fun x -> (dfst x).data :: (dsnd x)))

we  (fun _ -> 11ist0 ptr (n+1))
197 (requires fun hO -> not (is_null ptr))
19s  (ensures fun hO _ hl ->

199 h0 (vdep (vptr ptr) (fun v -> 1listO v.next n)
200 ‘vrewrite’

201 (fun x -> (dfst x).data :: (dsnd x)))

202 ==

203 hi (11istO ptr (n+1))

204 )

205

206 let 11istO_sl_pack ptr n

207 =

208 let x = n+l in

200 11listO_sl_subst ptr n (x-1);

210 11istO_norm ptr x;

211 change_equal_slprop

(vdep (vptr ptr) (fun v -> 1listO v.next (x-1))
213 ‘vrewrite’

2

-
N



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

236

237

238

240

241

242

243

244

245

246

247

248

249

250

251

252

254

255

256

257

258

259

162

(fun x -> (dfst x).data :: (dsnd x)))
(11ist0 ptr x);

change_equal_slprop
(11ist0 ptr x)

(11ist0 ptr (n+1))

val cons (#opened:_) (#a: TypeO) (hd: t a) (ptr:

: SteelGhost unit opened
(vptr hd “star” 1llist ptr n)

(fun _ -> 1list hd (n+1))

(requires fun h0 ->
let v : cell a = sel hd hO in
v.next == ptr

)

(ensures fun hO r hl ->
let v : cell a = sel hd hO in
let 10 : list a = v_1llist ptr n hO in
let 11 : list a = v_1list hd (n+1) hl in
11 == v.data :: 10

)

let cons hd ptr n

let h0 = get () in
let ¢ = G.hide (sel hd hO) in
(* *) vptr_not_null hd;
(¥ *) assert (G.reveal (next c) == ptr);
(#¥*) 1list_to_11istO ptr n;
(¥ *) intro_vdep
(vptr hd)
(11ist0 ptr n)
(fun v -> 11ist0 v.next n);
(¥ #) intro_vrewrite
(vdep (vptr hd) (fun v -> 11ist0O v.next n))
(fun x -> (dfst x).data :: (dsnd x));
(*¥*) assert (not (is_null hd));
(¥*) 11istO_sl_pack hd n;
(##) 1listO_to_llist hd (n+1)

val cons_malloc (#a: TypeO) (ptr: t a) (n: G.erased nat) (v:

: Steel (t a)
(11ist ptr n)
(fun r -> 1list r (n+1))
(requires fun _ -> True)

(ensures fun hO r hl1 ->
let 10 : list a = v_1llist ptr n hO in
let 11 : list a = v_1list r (n+1) hl in

APPENDIX A. LINKED LISTS USING STEEL COMBINATORS

t a) (n: G.erased nat)

a)
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11 == v :: 10

let cons_malloc ptr n v

let ¢ = mk_cell ptr v in
let ptr' = malloc c in
cons ptr' ptr n;

return ptr'

val intro_nil (#a: Type0O) (_: unit)

: Steel (t a)

emp (fun ptr -> 1llist ptr 0)

(requires fun _ -> True)

(ensures fun _ ptr hl ->
let 11 : list a = v_1llist ptr O hl in
11 == [I /\
is_null_t ptr

)

let intro_nil #a

(¥ %) 11istO_norm_nil #a null O;
intro_pure (is_null_t #a null);
(¥ *) intro_vrewrite (pure (is_null_t null)) (null_rewrite #a null);
(* *) change_equal_slprop
(pure (is_null_t null) “vrewrite  (null_rewrite #a null))
(11ist0 #a null 0);
(¥+) 11istO_to_1l1list null O;
return null

val tl (#a: TypeO) (ptr: t a) (n: G.erased nat{n > 0})
: Steel (t a)
(1list ptr n)
(fun ptr' -> vptr ptr “star” 1llist ptr' (n-1))
(requires fun _ -> True)
(ensures fun hO ptr' hl ->
let 10 : list a = v_1llist ptr n hO in
let 11 : list a = v_1llist ptr' (n-1) hl in
let ¢ : cell a = sel ptr hl in
Cons? 10 /\
L.t1 10 == 11 /\
c.data == L.hd 10 /\
c.next == ptr'

let t1 ptr n
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308 =

300 (*#%) 1list_to_11listO ptr n;
310 (¥*) 1listO_norm ptr n;

su  (*#*) change_equal_slprop

312 (11ist0 ptr n)

313 (vdep (vptr ptr) (fun v -> 1listO v.next (n-1))
314 ‘vrewrite’

315 (fun x -> (dfst x).data :: (dsnd x)));

sie (**) elim_vrewrite

317 (vdep (vptr ptr) (fun v -> 11istO v.next (n-1)))
318 (fun x -> (dfst x).data :: (dsnd x));

si9 (*#%) let c_ghost = elim_vdep (vptr ptr) (fun v -> 11istO v.next (n-1)) in
20 let ¢ = read ptr in

321 (¥ *) assert (G.reveal c_ghost == c);
a2 (#*) change_equal_slprop

323 (11ist0 (next c_ghost) (n-1))

324 (11ist0 c.next (n-1));

325 (*#) 11listO_to_1llist (next c¢) (n-1);
326 return c.next
327

s2s val length (#a: TypeO) (ptr: t a) (n: G.erased nat)

329 : Steel nat
330 (11ist ptr n)
sz (fun _ -> 1list ptr n)

sz (requires fun _ -> True)
s33 (ensures fun hO 1 hl ->

334 let 10 : list a = v_1llist ptr n hO in
335 hO0 (1list ptr n) == hl (1list ptr n) /\
336 L.length 10 == 1 /\

337 1 == G.reveal n

338 )

339

340 module P = Steel.FractionalPermission

341

32 let lemma_null_implies_zero (#a: TypeO) (ptr: t a) (n: G.erased nat)
sis  (1: G.erased (list a))

3a4  (m: Mem.mem)

345 : Lemma

sss  (requires

347 Mem.interp (hp_of (1llist ptr n)) m /\
348 1list_sel ptr n m == G.reveal 1 /\

349 is_null_t ptr

350 )

351 (ensures

352 G.reveal n = 0O

353 )
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355 1f (G.reveal n = 0)
356 then ()
357 else (

358 1listO_norm ptr n;

359 interp_vdep_hp

360 (vptr ptr) (fun v -> 11istO v.next (n - 1)) m;
361 ptr_sel_interp ptr m;

362 pts_to_not_null ptr P.full_perm (ptr_sel ptr m) m
363 )

364

365 let lemma_nonnull_implies_positive (#a: TypeO) (ptr: t a) (n: G.erased nat)
sec  (1: G.erased (list a))

se7  (m: Mem.mem)

368 : Lemma

se0  (requires

370 Mem.interp (hp_of (1llist ptr n)) m /\
371 1llist_sel ptr n m == G.reveal 1 /\

372 not (is_null_t ptr)

373 )

sra (ensures

375 G.reveal n > 0O

376 )

377 -

szs 1f (G.reveal n = 0)

379 then (

380 1listO_norm_nil ptr n;

381 assert (hp_of (1llist ptr n) == hp_of (pure (is_null_t ptr)));
382 Mem.pure_interp (is_null_t ptr) m

383 ) else ()

384
ss5 let rec length ptr n

386 -

ss7 (*¥%) let hO = get () in

sss  (**) let 1 = G.hide (v_1llist ptr n hO) in
389 if (is_null_t ptr)

390 then (

391 (¥ *) extract_info (1list ptr n) 1 (G.reveal n = 0)
392 (lemma_null_implies_zero ptr n 1);

303 (#*) assert (G.reveal n = 0);

304 (¥*) 11listO_sl_nil ptr n;

395 return O

396 ) else (

397 (¥ *) extract_info (1list ptr n) 1 (G.reveal n > 0)
398 (lemma_nonnull_implies_positive ptr n 1);

399 (**) assert (G.reveal n > 0);

400 let ptr' = tl ptr n in

101 let 1' = length ptr' (n-1) in
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let1=1+1" in

(¥ *) cons ptr ptr' (n-1);

(*¥ *) change_equal_slprop
(1list ptr (n-1+1))
(1list ptr n);

return 1
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A.2 Equivalence to a textbook linked lists predicate

In this section, we include F* proofs that a variation over the previously de-
fined linked lists predicate using combinators is equivalent to textbook linked lists.
The only slight change is that the selector of the defined predicate is now of type
list (cell a) in order to make some proofs easier. This is due to the way the
considered textbook linked lists library is implemented, see the Selectors.LList
example included in the Steel repository. Recovering previous selector type 1list a
from the defined separation logic predicate 11ist_cells would be straightforward,
e.g., by adding another vrewrite combinator on top of it. Finally, we note that
while the textbook predicate defined in the Selectors.LList module is not exactly
the textbook one mentioned in Section , it is equivalent to it .

module LList.Selectors.Equiv
module G = FStar.Ghost

open Steel.Effect.Atomic

open Steel.Effect

open Steel.Reference

module Mem = Steel.Memory

module L = FStar.List.Tot

module P = Steel.FractionalPermission

// https://github.com/FStarLang/steel/

// file: share/steel/examples/steel/Selectors.LList. fst
module SL = Selectors.LList

friend Selectors.LList

let cell (a: TypeO) = SL.cell a
let t (a: TypeO) = SL.t a

let is_null_t (#a: TypeO) (ptr: t a) = is_null ptr
let null_rewrite (#a: TypeO) (ptr: t a) (_:unit)

: GTot (list (cell a))

=[]

let f_rewrite (#a: Type0O) (v: dtuple2 (cell a) (fun
: Tot (1list (cell a))

dfst v :: dsnd v

// selectors is of type (cell a)

let rec 1llist_cells (#a: TypeO) (ptr: t a) (n: nat)
: Pure vprop
(requires True)

-> 1list (cell a)))
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34 (ensures fun r -> t_of r == list (cell a))
35 (decreases n)

36

37 if (n = O)

38 then (

39 pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr)
w0 )

a1 else (

42 (vdep

13 (vptr ptr)

44 (fun v -> 1llist_cells v.next (n-1)))

45 “vrewrite”

46 (fun x -> f_rewrite x)

o)

1 let 1list_cells_norm (#a: TypeO) (ptr: t a) (n: nat)
50 : Lemma

51 (requires n > 0)

52 (ensures

53 (vdep (vptr ptr) (fun v -> 1llist_cells v.next (n-1))
54 “vrewrite®

55 (fun x -> f_rewrite x))

56 ==

57 (1list_cells ptr n)

58 )

59 -

s assert_norm(begin

61 if (n = 0)

62 then pure (is_null_t ptr) “vrewrite  (null_rewrite #a ptr)
63 else (

64 vdep (vptr ptr) (fun v -> 1llist_cells v.next (n-1))
65 “vrewrite®

66 (fun x -> f_rewrite x)

o7 )

68 end

69
70 1llist_cells ptr n)

71

72 let 1list_pack (#a:Type0)

73 (ptr: t a) (n: nat) (m:Mem.mem)
74 : Lemma

s (requires

76 n>0/\

7 Mem.interp (hp_of (vptr ptr)) m /\
78 (let hd = sel_of (vptr ptr) m in
79 Mem.interp (hp_of (vptr ptr) "Mem.star"

80 hp_of (1list_cells hd.next (n-1))) m
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)
(ensures
Mem.interp (hp_of (1list_cells ptr n)) m /\
(let hd = sel_of (vptr ptr) m in
let tl = sel_of (1list_cells hd.next (n-1)) m in
let 1 = sel_of (1list_cells ptr n) m in
1 =="hd :: tl
)
let hd = sel_of (vptr ptr) m in
let tl = sel_of (1list_cells hd.next (n-1)) m in
llist_cells_norm ptr n;
interp_vdep_hp
(vptr ptr) (fun v -> 1list_cells v.next (n - 1)) m;
vdep_sel_eq
(vptr ptr) (fun v -> llist_cells v.next (n - 1)) m;
// vrewrite selector: see vrewrite_sel, casts seem required
let x = sel_of (vdep (vptr ptr) (fun v -> 1llist_cells v.next (n-1))) m in
assert (x == (|hd,tl]|));
let p = vdep (vptr ptr) (fun v -> 1llist_cells v.next (n-1)) in
let open FStar.Tactics in
assert (hp_of p == normal (hp_of p)) by trefl();
vrewrite_sel_eq
(vdep (vptr ptr) (fun v -> 1llist_cells v.next (n -1)))
(fun x -> f_rewrite x) m;
let y : _ = (vrewrite_sel
(vdep (vptr ptr) (fun v -> 1llist_cells v.next (n -1)))
(fun x -> f_rewrite x)

<: selector' _ _ ) m in

let z : _ = f_rewrite ((normal (sel_of
(vdep (vptr ptr) (fun v -> 1llist_cells v.next (n - 1))))
<: selector' _ _) m) in

assert (y == z);

assert_norm (z == f_rewrite x)

let rec equiv_from_oldstyle_to_newstyle (#a:Type0)

(ptr: t a) (1: list (cell a)) (m:Mem.mem)

: Lemma

(requires Mem.interp (SL.1llist_sl' ptr 1) m)

(ensures
Mem.interp (hp_of (1llist_cells ptr (L.length 1))) m /\
sel_of (1llist_cells ptr (L.length 1)) m == 1

)

(decreases (L.length 1))

match 1 with
| ] ->
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Mem.pure_interp (ptr == null #(cell a)) m;
Mem.pure_interp (is_null_t ptr) m;
vrewrite_sel_eq (pure (is_null_t ptr)) (null_rewrite #a ptr) m

| hd :: t1l ->
// SL.llist_sl' = pl * p2 * p3

let pl = pts_to_sl ptr P.full_perm hd in
let p2 = SL.1list_sl' hd.next tl in
let p3 = Mem.pure (ptr =!= SL.null_llist) in

let m12, m3 = Mem.id_elim_star (pl "Mem.star™ p2) p3 m in
let ml, m2 = Mem.id_elim_star pl p2 ml2 in

// llist_cells = pl1' * p2'

let pl!' vptr ptr in

let p2' = 1list_cells hd.next (L.length 1 - 1) in

intro_ptrp_interp ptr P.full_perm hd mi;
assert (Mem.interp (hp_of pl') ml);
ptr_sel_interp ptr mi;

pts_to_witinv ptr P.full_perm;

assert (sel_of pl' ml == hd);

equiv_from_oldstyle_to_newstyle hd.next tl m2;
assert (Mem.interp (hp_of p2') m2);
assert (sel_of p2' m2 == tl);

Mem.intro_star (hp_of pl') (hp_of p2') ml m2;
Mem. join_commutative ml m2;

assert (G.reveal ml2 == Mem.join ml m2);
1llist_pack ptr (L.length 1) ml2

let 1list_unpack (#a:TypeO)

(ptr: t a) (n: nat) (m:Mem.mem)

: Lemma

(requires
Mem.interp (hp_of (1list_cells ptr n)) m /\
n > 0)

(ensures (
Mem.interp (hp_of (vptr ptr)) m) /\
(let hd = sel_of (vptr ptr) m in
Mem.interp (hp_of (vptr ptr) "Mem.star  hp_of (1list_cells hd.next
(let t1 = sel_of (1llist_cells hd.next (n-1)) m in
let 1 = sel_of (1llist_cells ptr n) m in
1l =="hd :: tl

)))

let 1 = sel_of (1llist_cells ptr n) m in
llist_cells_norm ptr n;

(n-1))) m /\
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175 let p = vdep (vptr ptr) (fun v -> 1list_cells v.next (n-1)) in
176 let open FStar.Tactics in

177 assert (hp_of p == normal (hp_of p)) by trefl();

17 assert (Mem.interp (hp_of

179 (vdep (vptr ptr) (fun v -> 1llist_cells v.next (n - 1)))
180 ) m) 5

181 interp_vdep_hp

182 (vptr ptr) (fun v -> llist_cells v.next (n - 1)) m;

153 vdep_sel_eq

184 (vptr ptr) (fun v -> 1llist_cells v.next (n - 1)) m;

185 let x = sel_of (vdep (vptr ptr) (fun v -> 1llist_cells v.next (n-1))) m in
16 let hd = sel_of (vptr ptr) m in

187 let tl = sel_of (1llist_cells hd.next (n-1)) m in

188 // vrewrite selector: see vrewrite_sel, casts seem required

189 vrewrite_sel_eq

190 (vdep (vptr ptr) (fun v -> 1llist_cells v.next (n -1)))
101 (fun x -> f_rewrite x) m;

12 let y : _ = (vrewrite_sel

193 (vdep (vptr ptr) (fun v -> 1llist_cells v.next (n -1)))
104 (fun x -> f_rewrite x)

195 <: selector' _ _ ) m in

w6 let z : _ = f_rewrite ((normal (sel_of

197 (vdep (vptr ptr) (fun v -> 1llist_cells v.next (n - 1))))
108 <: selector' _ _) m) in

199 assert (y == z);

200 assert_norm (z == f_rewrite x)

201

202 let rec equiv_from_newstyle_to_oldstyle (#a:Type0)

203 (ptr: t a) (n: nat) (m:Mem.mem)

204 : Lemma

205 (requires Mem.interp (hp_of (1list_cells ptr n)) m)
206 (ensures (

207 let 1 = sel_of (1llist_cells ptr n) m in

208 Mem.interp (SL.1llist_sl' ptr 1) m

200 )

210 (decreases n)

211 = match n with

212 | 0 ->

213 Mem.pure_interp (ptr == null #(cell a)) m;
214 Mem.pure_interp (is_null_t ptr) m;

215 vrewrite_sel_eq (pure (is_null_t ptr)) (null_rewrite #a ptr) m
216

217 | _ >

218 llist_unpack ptr n m;

219 // llist_cells = pl * p2

220 let pl = vptr ptr in

221 assert (Mem.interp (hp_of pl) m);
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let hd = sel_of (vptr ptr) m in

let p2 = 1llist_cells hd.next (n-1) in

assert (Mem.interp (hp_of p2) m);

let tl = sel_of p2 m in

let 1 = sel_of (1llist_cells ptr n) m in

assert (1 == hd :: tl);

let ml, m2 = Mem.id_elim_star (hp_of pl) (hp_of p2) m in
// SL.1list_sl' = p1' * p2' * p3'

let pl' = pts_to_sl ptr P.full_perm hd in

let tl = sel_of p2 m2 in

let p2' = SL.1list_sl' hd.next tl in
let p3' = Mem.pure (ptr =!= SL.null_1list #a) in
// 1. pts_to

ptr_sel_interp ptr ml;

assert (Mem.interp pl' ml);

// 2. recursive call to SL.llist_sl'
equiv_from_newstyle_to_oldstyle hd.next (n - 1) m2;
assert (Mem.interp p2' m2);

// 3. ptr =!I= null

pts_to_not_null ptr P.full_perm hd ml;

assert (ptr =!= SL.null_llist #a);

// SL walidity
Mem.intro_star pl' p2' ml m2;
Mem. join_commutative ml m2;
assert (G.reveal m == Mem.join ml m2);
Mem.emp_unit (pl' “Mem.star™ p2');
Mem.pure_star_interp (pl' "Mem.star™ p2')
(ptr =!= SL.null_llist #a)
m;
assert (Mem.interp (SL.1list_sl' ptr (hd::tl)) m)
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